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INVISCID FLOW FIELD 
INDUCED BY A ROTOR I N  GROUND EFFECT 

By Michael D. Greenberg and Alvin L. Kaskel 
Therm Advanced Research, Inc. 

SUMMARY 

The inviscid flaw f i e l d  induced by a rotor i n  ground e f f e c t  is calculated 
based upon an actuator disk model of the rotor,  f o r  the case of a constant 
c i r cu la t ion  d i s t r ibu t ion  over the blade radius. The governing nonlinear in te -  
g r a l  equations are solved by a systematic i t e r a t i v e  scheme which is similar  t o  
the Newton-Raphson method for  the solution of nonlinear algebraic equations. 
Numerical r e s u l t s  are presented for  both t h e  ground-effect case and the out-of- 
ground-effect l imi t .  

INTRODUCTION 

Several important problems arise i n  connection with a rotor  hovering i n  
ground e f f e c t ,  such as downwash impingement, and the e f f e c t  of rotor-ground 
interference on the blade loading. 

In  the present paper, w e  a re  concerned with t h e  problem of downwash im-  
pingement. Of the various aspects of t h i s  problem, we w i l l  confine our a t tent ion 
to the calculat ion of the inviscid flow f i e ld .  This is of special  importance 
s ince it is required as input for  the subsequent calculat ion of the ground bound- 
ary layer  and p a r t i c l e  entrainment. 

A numerical investigation of the inviscid flow f i e l d  induced by a f i n i t e -  
bladed ro tor  has been carr ied out a t  the Cornel1 Aeronautical Laboratory, over 
the pas t  several  years, by W. G. Brady, P. C r i m i ,  F. A. DuWaldt, and A. Sowyrda 
I n i t i a l l y ,  they represented the rotor  wake by d iscre te  ( f i n i t e  core) vortex 
r ings released per iodical ly  from the edge of the ro tor  disk (References 1,2). 
More recent ly ,  they have used a wake model based upon d i s to r t ed  continuous 
he l i ces  emanating from the blade t i p s  (Reference 3).  

In  contrast ,  w e  w i l l  consider the axisynunetric flow f i e l d  associated with 
an actuator disk representation of the rotor. 
equations w i l l  be solved by a systematic i t e r a t i v e  procedure which is based 
upon the Newton-Raphson method f o r  the solution of nonlinear algebraic equations 
(Reference 4 ) .  
believe,  be applied t o  other  nonlinear free-boundary problems. 

The governing nonlinear in tegra l  

The mathematical treatment is somewhat general and could, w e  

The nonlinear actuator disk,  i n  the absence of ground ef fec t ,  has already 
been t r ea t ed  i n  an important paper by T. Y. Wu (Reference 5) ,  although numerical  



r e s u l t s  a r e  not ye t  available.  The work of H. R .  Chaplin (Reference 6 )  should 
a l so  be noted, even though it deals with the  shrouded disk,  s ince  tha t  problem 
is fundamentally similar t o  the one t r ea t ed  here. Both Wu and Chaplin employ 
i terat ive schemes w h i c h  d i f f e r  appreciably from the one developed i n  the  present 
paper. 

The authors would l i k e  t o  thank their colleagues, Messrs. J. C. Erickson, Jr. 
and G. R. Hough, f o r  many helpful  discussions during the course of this work. 

PRINCIPAL NOMENCLATURE 

coe f f i c i en t s  i n  expansion of sl ipstream v o r t i c i t y  

coe f f i c i en t s  i n  expansion of sl ipstream radius 

loading coe f f i c i en t  

t h r u s t  coef f ic ien t ,  thrust/ij(RR)2 (TR 2 ) 

matching functions f o r  sl ipstream shape 

function i n  dynamic equation, 

F w i t h  T(x)  replaced by Tm 

matching functions fo r  sl ipstream v o r t i c i t y  

Green's function f o r  L , over the i n f i n i t e  domain - m <  x <  m , r <  m 

modified f . ' s  fo r  ground-effect case 

l inea r  d i f f e r e n t i a l  operator, V2 - r-2 
number of shape collocation points 

i t e r a t i o n  index 

number of gamma collocation points 

s ta t ic  pressure 

f l u i d  velocity,  (u  + v + w ) 

Legendre functions of second kind and degree 

sl ipstream radius,  with arguments e and x respectively 

x , r , e  f l u i d  veloci ty  components 

free-stream speed 

C - C2/4T2(x) 

3 

2 2 2 %  

*+ 
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Y ,Ys 

yo¶ 

r 

yo¶ 

%,2 

R 

cyl indr ica l  coordinates 

x-location of ground plane 

damping fac tors  

sl ipstream c i rcu la t ion  per un i t  x-length and arc-length, respect ively 

asymptotic value of Y 

blade c i rcu la t ion  d i s t r ibu t ion  

meridional velocity,  (u  2 + v  2 %  ) 

advance r a t i o ,  U/- 

dummy x , r  var iables ,  respectively 

f lu id  mass density 

stream function 

value of Y on the sl ipstream 

Legendre function arguments 

blade ro ta t iona l  veloci ty ,  radians per u n i t  time 

prime denotes per turbat ional  quantity 

subscripted var iable  denotes pa r t i a l  d i f f e ren t i a t ion  with respect  t o  
t h a t  var iable  

nth i t e r a t e  

d(arc-length)/dx , [l + ( d T / d ~ ) ~ ] *  

NOTE: Prior  t o  equation (21), a l l  quant i t ies  a r e  i n  dimensional form. 
S tar t ing  with equation (21), they a r e  nondimensionalized as follows: 
lengths with respect  t o  R : veloci t ies ,  Y and 7, with respect  t o  
SZR : r with respect  t o  szR2 : and Y with respect  t o  RR3 . 
ever. fo r  notat ional  s i m p l i c i t y  w e  omit any e x p l i c i t  reminder of 
nondimensionalization, such as primes or as te r i sks .  

3 



THEORETICAL DEVELOPMENT 

Out-of-Ground-Effect L i m i t ;  Actuator Disk Theory 

Governinq Nonlinear Di f fe ren t ia l  Equation. L e t  us  consider a propel ler  of 
blade radius R and negl igible  hub radius,  operating r e l a t i v e  t o  a uniform f r e e  
stream U . W e  consider the  blade number to be i n f i n i t e ,  the so-called “actuator 
d i sk”  model, and view the steady axisymmetric f low from a Newtonian x,r ,e co- 
ordinate system; see Fig. 1 (where we have sketched only one of the i n f i n i t e l y  

W 
V 

u+u’  

Figure 1. Coordinates and Geometry 

many blades).  The s ta t ic  actuator  disk,  i .e. fo r  U = O  , is equivalent t o  our 
hovering rotor  ou t  of ground e f f ec t .  W e  w i l l ,  however, r e t a i n  an a rb i t r a ry  U 
i n  our analysis s ince  it presents no addi t ional  d i f f i c u l t y  and, a t  the same 
time, extends the appl icabi l i ty  of our so lu t ion  from the s t a t i c  condition, up 
to  the  l i gh t  loading l i m i t  (where U >> the per turbat ional  ve loc i t ies ) .  

The flow f i e l d  is defined by the x , r ,9  veloci ty  components u,v,w re- 
spectively,  or - equivalently - by w and a stream function Y , such t h a t  

u = u +  u’ = Yr/r  

v = v’ = -YJr 

where the primed terms a r e  per turbat ional  quant i t ies ,  and subscr ipts  denote 
p a r t i a l  d i f fe ren t ia t ion .  

It has been shown by Wu (Reference 4), that Y must s a t i s f y  the following 
nonlinear p a r t i a l  d i f f e r e n t i a l  equation, 

4 



-1 Y,+ Y~ = - (fir2+ w r )  d(wr)/dY 'rr - ( 3 )  

Brief ly ,  this may be derived by computing the c i rcu la t ion  about an elemental 
meridional area dxdr , i n  two di f fe ren t  ways: According t o  Stokes' theorem it 
may be computed as the (3 component of vor t ic i ty ,  vx -ur , times the area  
dxdr , or ,  a l te rna t ive ly ,  as  the l i n e  integral  of "q dr"  - around the circum- 
ference of the element. Equating these two r e s u l t s  produces (3). 

Conversion to an In tegra l  Equation. It  w i l l  be convenient to convert (3) 
-2 t o  an in t eg ra l  equation. With L E V2 - r and Y = Ur2/2 + Y '  , we can express 

(3) i n  the form 

L(y'/r) = - ( R r + w )  d(wr)/dY (4 )  

Noting that L is l i n e a r  (the nonlinearity being confined t o  the r i g h t  hand 
s ide )  w e  apply the method of Green's functions: 
Green's function G as  the solut ion of the associated equation 

Specif ical ly ,  w e  seek the 

L(G/r)  = -6(x-S)6(r-p) (5) 

w i t h  t h e  6's denoting D i r a c  d e l t a  functions. Multiplying (5)  through by 
rJl(?r)exp(-i%c) and in tegra t ing  on r from O + m  and on x from - m - m  , 
w e  obtain 

as the Hankel-Fourier transform of G/r , where J1 denotes t h e  B e s s e l  function 
of the  f irst  kind and order one. Carrying ou t  the Fourier inversion using the 
calculus  of residues,  and the Hankel inversion with t h e  he lp  of formula (2 )  on 
page 389 of Reference 7, w e  obtain 

where 4% is the Legendre function of second kind and degree 4 , with argument 

"his is equivalent t o  the forms given by Wu and Chaplin. Physically,  w e  may 
iden t i fy  G as  t he  stream function induced a t  a f i e l d  point  x , r ,e  by a r ing  

5 



Figure 2. Interpretat ion of the Green's Function 

vortex of u n i t  strength,  as shown i n  Fig.  2 . 
With the Green's function i n  hand, w e  may re-express (3) i n  the  form 

D 

This is a nonlinear i n t eg ra l  equation i n  the two unknowns Y and D . The 
region D is c l e a r l y  the slipstream, s ince  w - and hence d(wp)/dY - is zero 
outside the slipstream, by application of Kelvin's theorem. 

Reduction f o r  Uniform Circulation Distribution. For the case of uniform 
blade circulation d i s t r ibu t ion  w e  have 

wp = constant = 4 / 2 ~  , ins ide  D 

= o  , outside D 

where r is the strength of the %ub" vortex, coinciding w i t h  the pos i t i ve  x 
axis. Converting the p , e  integrat ion variables t o  Y , 4  according t o  dpde = 
dYde/(aY/ap) , the Y integrat ion can be carried ou t  e x p l i c i t l y  s ince  the 
d(wp)/dY t e r m  i n  the  integrand is zero except a t  the hub and t ip ;  p = O , R  . 
Of these two contributions,  the hub portion is zero s ince  p4Q4 = 0 a t  p 5 0  . 
The result ing in t eg ra l  equation, then, i s  

6 



w h e r e  t ( f )  w i l l  denote the slipstream radius,  and Zl is iden t i ca l  t o  G , 
with p replaced by t ( f )  . 

V o r t e x  Sheet In te rpre ta t ion .  Although w e  =work d i r e c t l y  w i t h  (ll), w e  
p re fe r  t o  re-express the in t eg ra l  t e r m  in t e r m s  of an equivalent vortex repre- 
sentat ion of the  slipstream; spec i f ica l ly ,  a d i s t r i b u t i o n  of ring vor t ices  , of 
c i r cu la t ion  ~ ( e )  per u n i t  e-length, over the slipstream surface p = t ( f )  . 

According t o  our physical in te rpre ta t ion  of the Green’s function G , w e  

9 

can therefore express ~ ( x , r )  i n  the form 

W e  can establish the equivalence between (11) and (12) as follows: 

points  “m” and ( f8t+)  w e  have 
Applying the Bernoulli equation to  streamline A (see Fig. 3) between the  

2 2 
PA + % B A  = P, + %p 

2 2  where i s  the f l u i d  m a s s  density and q2 I u2+ v + w . 

m “ 

.f 

Figure 3 .  Application of Bernoulli Equation 

* There w i l l  a l so  be a d i s t r ibu t ion  of vor t ices ,  over the slipstream surface, 
which are oriented ax ia l ly .  These contribute t o  w b u t  not t o  Y , and w i l l  
no t  d i r e c t l y  concern us. 

7 



I f  we a l so  apply it to streamline B , from "m" to ( O - , R - )  and then 
from ( O + , R - )  to ( c , t - )  , w e  f ind  that 

where Ap is the pressure jump across the propel ler  plane a t  p = R -  . Now, 
the slipstream v o r t i c i t y  d r i f t s  f r ee ly  so t h a t  w e  must have 
t rac t ing  (13) from (14),  then, 

pB -pA = 0 . Sub- 

The f i r s t  and las t  terms on the r i g h t  s ide  are simply 

Ap = d(thrust)/2npdp 

= p(np - r /hp) rdp/2~pdp 

a t  p = R -  , according to the  Kutta-Joukowski formula, and 

according to (10).  To evaluate the middle term i n  ( l 5 ) ,  w e  note t h a t  

where w e  have 
the f a c t  tha t  

2 2 2  2 2 2  (u + v  + w  )B - (u  + v  + w  )A 

5; - 5: + r2/4T2t2 

defined the "meridional" veloci ty ,  5 E (u2+ v2)* , and have used 
w = r/27~t and wA = 0 from (10).  Final ly ,  B 

where Y, 
slipstream. 

denotes the  sl ipstream c i rcu la t ion  per u n i t  =-length along the 
Combining (15)-(19), w e  may express the force-free condition on 

8 



the sl ipstream i n  the  simple form 

I f  w e  solve (20) for  Y , noting t h a t  a t  p =  t , we f ind t h a t  the 
in tegra l  term i n  (12) is, i n  f ac t ,  ident ical  t o  the one i n  (ll), thus estab- 
l i sh ing  the v a l i d i t y  of our vortex sheet representation. 

u = Yp/p 

The Final Integral  Equations. F i r s t ,  l e t  us non-dimensionalize as follows: 
lengths with respect t o  R : veloc i t ies ,  Y and Y, with respect  t o  QR : r 
with respect t o  52R2 : and Y with respect t o  QR3 . For notational s implici ty  
we w i l l  omit any e x p l i c i t  reminder of nondimensionalization, such as as te r i sks  
o r  primes, i n  the remainder of the report. Equations (12) and (20) ,  for  example, 
may therefore be rewrit ten as 

Y(x,r)  = Xr2/2 + G(f ; t :x , r )  y ( f )  df 

T u = - - -  c c 2  
8t2 

respectively,  where w e  have defined an advance r a t i o  X f U/s2R , and a "loading 
coef f ic ien t"  c E r/n . 

Whereas the in tegra l  equation (21) contains both the  kinematics dynamics, 
w e  prefer  t o  express these conditions separately. The kinematic condition on the 
sl ipstream is t h a t  it be a s t reaml ine  (more precisely,  an axisymmetric stream 
surface) .  Sett ing r = T ( x )  i n  (21),  we have 

* 

where w e  have set Y(0, l )  = Y[-,T(-)] = Y(-,Tm) E Ym . 
The dynamic condition is given by (22). Changing the independent var iable  

from to  x , and noting t h a t  u = Yr/ r  a t  r =  T , with Yr  obtained from 
(21 ) 8 w e  obtain 

* It w i l l  be convenient t o  express the slipstream radius as  t or  T depending 
on whether the argument is the integration var iable  5 or the f i e l d  point x , 
respectively.  

9 



Equations (23) and (24) ,  then, cons t i tu te  two coupled nonlinear i n t eg ra l  
equations in  the two unknowns Y and T , and are  t o  be s a t i s f i e d  over the  
extent  of the sl ipstream, O <  x <  m . 

The kernels are as  follows: 

where z2 is  ident ica l  t o  , with p and r replaced by t and T re- 
spectively.  Using the re la t ion ,  

w e  may express 

where 

A = [T2- t2+ ( 4 - ~ ) ~ ] / 8 n T  + t 3/2 

Finally,  w e  point  ou t  t h a t  the in t eg ra l  i n  (24) is t o  be interpreted i n  
the Cauchy pr incipal  value sense. 

Asymptotic Behavior of the Unknowns. Before proceeding with t h e  detai led 
solut ion of (23) and (24) l e t  us  examine the equations a t  x = O  and m . 

AS x * m , it  is known t h a t  T(x) - constant E T, , say, and Y(x) - 
constant 5 Y ,  . With these quant i t ies  constant a t  X = C O  , the in tegra ls  i n  
(23) and (24) can be evaluated ana ly t ica l ly .  Instead of pursuing the d e t a i l s  

10 



of the integrat ion,  l e t  us use the known f a c t  (e.g. Reference 8) t h a t  an i n f i n i t e  
solenoid of constant radius and constant vortex strength,  T, and Y, i n  our 
case, induces a veloci ty  f i e l d  given by 

Now, s ince 2nY(€,,p) is the mass flow through the disk r <  p a t  x = € ,  w e  
see - by v i r t u e  of (29) - t h a t  (23) reduce t o  

a t  x = m  . 
(24) must reduce t o  

Noting t h a t  (24) is merely a re-statement of (22),  w e  see a l so  t h a t  

a t  x = m  where w e  have introduced the quantity F ( x )  E C - C2/4T 2 ( x )  f o r  

convenience. Equation (31) can be  solved f o r  Y, i n  the form 

It is in te res t ing  t o  note t h a t  (30) and (32)  cons t i tu te  two equations i n  the 
th ree  unknowns Y ,  , T, and Ym so that  the  f i n a l  sl ipstream contraction can- 
not be computed ( i n  terms of the operating conditions X and C ) simply by 
invest igat ion of the asymptotic behavior, bu t  must await the  complete solution 
of the governing equations (23) and (24).  

Now l e t  us see what can be s a i d  about the behavior of the unknowns a t  the  
lip of the slipstream; i .e .  as x + 0 through posi t ive values. Consider, 
f irst ,  the s t a t i c  case, where X = O  . Anticipating a flow f i e l d  as sketched 
i n  Fig. 4, it is  c l e a r  t h a t  the flow around the l i p  implies a square-root s in-  
g u l a r i t y  i n  the c i rcu la t ion ,  so that yS(x)  = o(x-4) 
l a r i t y  should be present even when X > O  , and w i l l  vanish only i n  the l i g h t  
loading l i m i t  where the slipstream-induced j e t  veloci ty  is  negl igible  compared 
t o  the f r e e  stream. 

as x+ o . This singu- 

11 



Figure 4. Flow Field f o r  the Stat ic  Condition 

Solution Based Upon the Newton-Raphson Method. W i t h  an exact solut ion of 
the highly nonlinear, coupled, i n t eg ra l  equations (23) and (24) apparently ou t  
of the question, w e  w i l l  develop an i t e r a t i v e  solution as follows. S ta r t ing  
w i t h  

w e  determine an improved slipstream shape, T" '  , from (23); w i t h  T = T " '  w e  
then determine an improved vortex d i s t r ibu t ion ,  Y ('' , from (24); w i t h  y = Y ( l )  , 
T'" i s  then computed from (23), and so on, u n t i l  su i t ab le  convergence is a t ta ined .  
Our notation is to be interpreted i n  t h e  obvious way. 
by (32) with Fa replaced by FC' which, i n  turn,  is defined according t o  the 
same formula as P(x) but  w i t h  T(x) replaced by T:' . 

T("*') a t  each s t e p  w e  l i n -  

ea r i ze  a l l  the terms i n  (23) about the previous i terate,  T(") . Similarly,  t o  
solve (24) for  y("*l) w e  expand the  nonlinear t e r m  about yen) . Speci f ica l ly ,  

For example, YE) is given 

I n  order t o  car ry  ou t  t he  solut ion of (23) fo r  

12 



i n  (23) ,  where G'"' denotes G ( ~ , t ( " ) ; x , T ( " ) )  , and 

i n  (24).  This "stepwise l inear iza t ion"  i s ,  bas ica l ly ,  analogous t o  the  Newton- 
Raphson method fo r  the solut ion of algebraic equations (Reference 4 ) .  
s i z e  t h a t  (35)-(38) tend t o  equal i t i es  as the (presumably convergent) i t e r a t i o n  

W e  empha- 

proceeds, and therefore  i n  no way compromise the f u l l  nonl inear i ty  of (23) and 
(24). 

Whereas the  two "correction" terms i n  (38), for  example, are supplied auto- 
mat ical ly  by the mathematics, it is  instruct ive t o  in t e rp re t  them physically.  
Multiplying (23) through by 2n , for convenience, and taking n=O for  def i -  
ni teness ,  the i n t eg ra l  t e r m  i s  expanded, according to  (38), i n  the  form 

Now, @ is  eas i ly  ident i f ied  as the mass f l o w  r a t e  induced through the disk 
AB (see Fig. 5 )  by Y'O) on t"' , whereas we r e a l l y  want the  flow induced 
through AC by Y'O' on t"' i f  (23) i s  to be an equal i ty  a t  t h a t  par t icu lar  

1 - 5  A 

(= X 

Figure 5. Interpretat ion of Correction Terms 

value of x . The next term, @ , does i n  f a c t  p a r t i a l l y  cor rec t  t h i s  by 
deducting (approximately) the flow through the annulus BC . To see t h i s ,  l e t  
US re-express 



where (i) approximates the  a rea  of the annulus 
induced a t  B by Y t o )  on t'" . 

BC , and (ii) is  the x-velocity 

The l a s t  term, @ , supplies an additional correction which is not, how- 
ever l a s  eas i ly  in te rpre ted  i n  physical t e r m s .  

To provide a measure of control over the convergence of the i t e r a t i o n  w e  
introduce "damping fac tors"  a and B so t ha t  the r i g h t  hand s i d e  of (37) i s  
replaced by 

Based upon numerical r e s u l t s ,  w e  have found that i f  a+ f3 i s  too small, T"' 

w i l l  be overcontracted and the i t e r a t i o n  w i l l  diverge. A n  optimum is obtained, 
with regard t o  rapid convergence, when a+ ,B is increased t o  approximately 
1.8, independent of the disk loading. Curiously, the d e t a i l s  of the i t e r a t i o n  
are qui te  insens i t ive  as t o  how the ii1.8ii is  divided between a and f3 . Con- 
sequently, w e  w i l l  take f 3 =  0 , from here on, f o r  simplicity.  

Actually, it is not surpr is ing t h a t  with p =  0 the optimum a = 1.8 s ince  
(ii) i n  (40) is the x-velocity computed r i g h t  on the sl ipstream a t  B 

whereas the desired veloci ty  j u s t  ins ide  the slipstream is approximately twice 
as la rge  . 

(Fig. 5 )  

* 

To proceed with the  solut ion w e  expand 

M 
T ( ~ ) ( x )  = 1 + [ f j ( x ) -  fj(0)]b;"'  

j =1 

Y'"' (x) = ,/ 1 + (dT"')/dx)* Y:'(x) 

* Recall from ( 2 9 )  that a t  x = m  , u' i n s ide  the slipstream is exactly twice 
as l a rge  as it is on the slipstream. This is, i n  f a c t ,  a good approximation 
fo r  f i n i t e  x as w e l l .  

14  



where the f 's and g ' 8  a r e  sui tably chosen "matching functions" which tend 
to  zero a t  i n f i n i t y .  The form of these expressions guarantees s a t i s f a c t i o n  of 
the required end conditions, T'"'(0) = 1 and y ' " ' ( m )  = y r b " '  . In  addition, a t  
l e a s t  one of the g 's include an x-* factor ,  t o  ensure the required square- 
roo t  s ingular i ty  a t  the l i p .  

1 j 

1 

Using the above expressions, our "kinematic" equation (23) can be re-written 
i n  the form 

+ XT'"'[fj(x) - f j ( 0 ) ]  + T?(X+ Yz')fj(0) 1 by' 

and our "dynamic" equation (24) can be expressed as 

(44) 

where i t  is understood tha t  the "r'' terms a r e  evaluated a t  4 or x depend- 
ing on whether they a re  under an integral  sign or  not, respectively: s imilar ly  
for g j  , Y and ys . 

Our solution proceeds as follows: Star t ing with n=O we require the 
s a t i s f a c t i o n  of (44) a t  M "collocation" points 5 , ... xM . This produces 
M simultaneous l inear  algebraic equations which a re  then solved for  the unknown 
coef f ic ien ts  
N collocation points (which need not coincide with the M points used t o  solve 
(44 ) )  and hence compute a-f' , ... , a p f l )  . 
n = 1, 2,  ... u n t i l  su i tab le  convergence i s  at ta ined.  

b i )  , ... , b l )  . Next, we require the s a t i s f a c t i o n  of (45) a t  

The process is then repeated for  

We point out  t h a t  instead of solving (23) and (24) successively for  T and 
, w e  could have solved them simultaneously, a t  each s tep.  Although t h i s  might 

lead t o  convergence i n  fewer i te ra t ions ,  the overal l  computing time would almost 
ce r t a in ly  be grea te r ,  however, s ince i t  takes approximately twice as long to  
generate an order set of l inear algebraic equations as  it does t o  (M+N)th 



generate M and N t h  order sets separately.  

Interpretat ion of the Loading Coefficient.  Before discussing our numerical 
r e su l t s ,  l e t  us c l a r i f y  the physical s ignif icance of our "loading coef f ic ien t" ,  
C = r/n . Defining the th rus t  coef f ic ien t  CT as the t h r u s t  divided by 
F(nR)2(nR2) , w e  may use the Kutta-Joukowski formula t o  express 

r - m } r ( r )  d r  
4nr 

(46) 

Now, i n  our analysis  w e  have considered the blade c i rcu la t ion  d i s t r ibu t ion  
r ( r )  = constant = r over 0 < r < 1 . For t h i s  case, the s w i r l  t e r m  (r/4nr) 
i n  the integrand causes the  in t eg ra l  t o  diverge. In  r e a l i t y ,  however, r ( r )  
w i l l  drop to  zero a t  a f i n i t e  radius,  say E , where O <  E <1  . Replacing the  
lower integration l i m i t  by E , the integrat ion i n  (46) may be car r ied  out ,  t o  
give 

(47) 2 cT = C [  1 -E  + ( ~ / 2 ) , i ? n ~ ] / 2  

For typical values of C and E , c2-  (C/2),i?n~ is qu i t e  s m a l l  compared t o  
uni ty ,  so that t h e  loading coef f ic ien t  C is approximately twice the t h r u s t  
coeff ic ient  CT . 

Numerical Results. As an i l l u s t r a t i o n ,  l e t  us consider t he  s t a t i c  case 
X = O  , with a loading coef f ic ien t  C = 0.02 . 

W e  define our col locat ion scheme by choosing M = 7  , with the corresponding 
"shape collocation points  'I, 

x = 0.03, 0.1, 0.25, 0.5, 0.9, 1.5, 2.5 
j 

f o r  j =1 , . .. , 7 respectively; and N =  9 , w i t h  t h e  corresponding "gamma 
collocation points",  

x = 0.02, 0.05, 0.1, 0.18, 0.3, 0.5, 0.85, 1.4, 2.5 j 

f o r  j = l  , ... , 9 . W e  emphasize that there is l i t t l e  poin t  i n  choosing 
collocation points  fur ther  downstream than x = 2.5 , say, s ince  (as w e  w i l l  see 
in the subsequent Figures) the flow a t  t h a t  s t a t i o n  is essen t i a l ly  ident ica l  t o  
t h a t  i n  the ul t imate  jet .  In  f ac t ,  it can be expected to lead t o  an ill- 
conditioned set of equations s ince  our expression (43) fo r  Y automatically 
s a t i s f i e s  the dynamic equation a t  in f in i ty .  As a f i n a l  word of caution w e  note 
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that 
equation is not s a t i s f i e d  a t  

x = 0 must no t  be included as a gamma col locat ion poin t  s ince  the  dynamic 
x = O  

A s  our "matching functions" we choose 

g j ( x )  = x-4e-3x , j = l  

, j a2 = x  -0.84+ 0.51je-3x (49) 

as shown i n  Fig. 6 . These w e r e  arrived a t  by t r i a l  and e r ro r ,  and appear t o  
be equally su i t ab le  fo r  all values X > , O  and C > O  . 

Star t ing  with T'" = 1 and Yz) = 0.1411 (from (31) and ( 3 2 ) ) ,  and s e t t i n g  
the  damping fac tor  a = 1.8 , the i te ra t ion  i s  found t o  be rapidly convergent, as 
shown i n  Figs. 7-12 . A s  our convergence c r i t e r ion ,  we required the  i t e r a t i o n  t o  
continue u n t i l  T'"+') and Y;+') agreed with t h e i r  previous values, T'"' and Yz' , 
to within 0.G a t  each of the x values l is ted i n  Figs. 8-12 . Although it took 
f i v e  i t e r a t i o n s  t o  achieve t h i s  condition, it is seen t h a t  even the  second iterate 
provides a f a i r l y  good uniform approximation to  the solut ion.  

However, it remains t o  show t h a t  the converged r e su l t s  do, i n  f ac t ,  repre- 
s en t  the solut ion - s ince  w e  only required sa t i s f ac t ion  of the  equations a t  
several  d i sc re t e  col locat ion points.  To se t t le  this point ,  w e  have included a 
numerical check i n  the  program (Appendix), which ac tua l ly  compares the l e f t  and 
r i g h t  hand s ides  of the kinematic and dynamic equations (23) and (22) .  The 
r e s u l t s  of this check indicate  (Fig. 13) uniformly good agreement. 

The flaw f i e l d  has a l so  been computed, and is shown i n  Fig. 1 4  . It is 
important to  note t h a t  for  the s t a t i c  condition the streamline pa t te rn  is  v i r -  
t u a l l y  independent of C , a t  l e a s t  over the range of values which a re  of 
p rac t i ca l  i n t e re s t .  To see t h i s ,  consider the  governing equations (23) and 
(24) .  For X = 0 , the C dependence cancels out  of (23) s ince  both Yw and 
Y a re  proportional to Yw which, i n  turn, contains the  C dependence. Turn- 
ing t o  the dynamic equation (24),  w e  see t h a t  i f  w e  discard the  s w i r l  t e r m  
C2/8T2 , y w i l l  ( fo r  X = 0 ) simply be proportional t o  C' . With the s w i r l  
t e r m  omitted, then, it follows tha t  the streamline pa t te rn  w i l l  be completely 
independent of C although, of course, the ve loc i t i e s  w i l l  be proportional to 
C4 . With the  s w i r l  term included, th i s  r e s u l t  is no longer t rue  i n  an exact  
sense. However, fo r  p rac t i ca l  values of C , C2/8T2 << C/2 i n  (24) ,  so that 
our statement nevertheless remains t rue  in an approximate sense. To ver i fy  
this numerically, w e  re-computed our numerical example with C increased by 
e igh t  times, i.e. w i t h  C=0.16 , and found the streamlines to be v i r t u a l l y  
unchanged: 



1.0 

f j 
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0 . 0  
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Figure 6 .  The Matching Functions 
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Two points  are of Special i n t e r e s t  with regard t o  Fig. 1 4  . F i r s t ,  w e  
po in t  o u t  that a t  x=1 .2  the (meridional) veloci ty  ins ide  the sl ipstream is 
almost constant,  and is  only about one percent smaller than its ult imate value 
a t  X = O O .  

Second, w e  see tha t  t h e  x-component of veloci ty  is almost exactly constant 
over the actuator  d i sk  - out  t o  about r =  0.9 where it starts t o  drop o f f .  As 

r increases fur ther ,  the trend must reverse s ince  the a x i a l  veloci ty  must - w a s  r - 1- by v i r tue  of the  square-root s ingular i ty  i n  Y a t  the l i p .  
Now, it is known (e.g. Reference 8) that i n  the  l i g h t  loading l i m i t  (i.e. the 
l inear ized  actuator d i sk  theory),  the axial  component of the induced veloci ty  
is exact ly  constant over the disk radius.  The f a c t  t h a t  this r e s u l t  is  born 
out  over most of the d isk  radius  i n  our example, which is a t  the other  (nonlinear) 
extreme, leads us to  wonder whether the axia l  component of the induced veloci ty  
is  i n  f a c t  exact ly  constant over the d i s k  radius  ( fo r  our case r ( r )  = constant ), 
fo r  9 condition between (and including) the l i g h t l y  loaded and s t a t i c  l i m i t s .  

I f  t h i s  w e r e  t rue,  it would imply that our i n i t i a l  sl ipstream contraction 
must be purely rad ia l :  This follows immediately from the f a c t  t ha t  the merid- 
ional  ve loc i ty  is i n f i n i t e  j u s t  ins ide  the l i p ,  due t o  the square-root singu- 
l a r i t y  i n  Y . Its inc l ina t ion  must therefore be r a d i a l  i f  the  axial veloci ty  
is t o  remain constant a t  x = O  as r - 1- . 

Flow visual izat ion s tudies  (References 9.10) ( fo r  a f i n i t e  blade number, 
of course) do indicate  a strong r ad ia l  flow i n  the t i p  region. 
purely r a d i a l  flow, i n  f ac t ,  Reference 10 reports  a s l i g h t  upstream inc l ina t ion  
of the flow a t  the t i p ,  so t h a t  a reverse flow exists over approximately the 
outer  5% of the blade radius.  W e  must note, however, t h a t  the  exis t ing r ( r )  
i n  Reference 10  is undoubtedly qu i t e  unlike our prescribed d is t r ibu t ion ,  
r(r) constant , especial ly  near the tip.  

Instead of 

On the other  hand, i f  the ax ia l  component of the induced veloci ty  is  not 
exact ly  constant over the  disk radius  then the s t rongly nonuniform ax ia l  inflow 
i n  the t i p  region is  i n  f a c t  cor rec t ,  and may have a bearing on the well-known 
double bump i n  spanwise loading which has been observed near the t i p  of a number 
of hel icopter  ro tors .  

I n  any case, it seems clear t h a t  our r e s u l t s  (Figs.  7-14) a r e  qu i t e  accurate 
except, possibly,  i n  the  immediate t i p  region. The d e t a i l s  i n  t h i s  region remain 
t o  be c l a r i f i e d .  

Inclusion of the Ground Effec t  

The In tegra l  Equations. Three changes are  required i n  the in tegra l  equa- 
t ions  (23) and (24) i n  order t o  accommodate the  e f f e c t  of a ground plane a t  
X=x ; see Fig. 15 . F i r s t  of a l l  t h e y  contain an a rb i t r a ry  advance r a t i o  h , 



0 1 r 

Figure 15. Ground Effect  Model 

whereas i n  the ground e f f e c t  case w e  l i m i t  ourselves to static hover, so t h a t  
X =  0 . In addition, w e  change the upper integrat ion limits t o  X , and modify 
the Green's function so t h a t  it s a t i s f i e s  the additional boundary condition 
u = O  a t  the ground plane. Specif ical ly ,  w e  now have 

FJ 2 where w2 is ident ica l  to z2 , w i t h  
Interpreted i n  terms of a vortex model, t h i s  amounts t o  adding an image system 
as  indicated by the dashed l i n e s  i n  Fig. 15 . 

(x  - 4 )2  replaced by ( x -  2X+ 9) . 

Analogous to  equations (27) and (28), w e  now have 

fl B 
where A and B are ident ica l  to  A and B , with ( x -  e ) 2  replaced by 
( x - 2 X + 0 2  . 

U 
W e  observe t h a t  as X - 00 , u2 and Qk4(E2) a l l  tend t o  zero so that 

w e  do recover our previous out-of-ground-effect equations. 
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Asymptotic Behavior N e a r  the Ground Plane. As x -. x- , we see from (19) 
and (22) that ysc - C/2 s ince  t -. OD i n  t he  denominator of the l a s t  term i n  

(22).  5 - Ys/2 , the d r i f t  veloci ty  induced on the 
s l ipstream by the image vortex sheet .  Combining these r e su l t s ,  it follows t h a t  

In  addition, we must have 

Y , - C  % . 
To obtain t h e  asymptotic behavior of T , w e  apply the cont inui ty  equation 

a t  an a rb i t r a ry  s t a t i o n  AA , as shown in  Fig. 15 . The "control area" is 
(27rT)(X-x) and the ve loc i ty  through it  is - Y, : Ys/2 due t o  the slipstream 
vor t i c i ty ,  and ys/2 due to the image vor t ic i ty .  Continuity therefore  requires  
that yS(2nT)(X-x) = constant and, recal l ing tha t  7 ,  - C* , it follows that 
T ( X ) -  O(X-x)-l . 

I n  order to incorporate this behavior exp l i c i t l y ,  we expand 

M 
~ ' " ' ( x )  = 1 + c [h j (x )  - h j ( 0 ) ]  by' 

w h e r e  h ,  (x )  = f , (x)/(X-x) 

N 

j =1 

and the  g; ' a  tend to  zero 

(52) 

(53) 

as x -. X : c . f .  equa- 
J 

t i ons  (46) and ( 4 3 )  for  the out-of-ground-effect l imi t .  

The Final  Equations. Linear algebraic equations analogous t o  (44) and 
(45) can be obtained almost exact ly  as before. 
expression of "YatO . Since 2nY- is the  m a s s  flow r a t e  through any disk BB 

The only difference is i n  the 

(See Fig. 15)  it is also,  by continuity,  the flow rate through the 
s t a t i o n  AA : namely, Ys(27rT)(X-x) . Instead of (35), therefore,  

M 

asymptotic 
w e  have 

Using B =  0 again, w e  f i nd  t h a t  our kinematic equation can be reduced t o  

Jo 
M X 

= 2 ( a [ h j ( x ) -  h j ( 0 ) ]  / G:'y'"'de -C'fj(X)} byt1) 
j =1 0 

for  n = 0 ,  1, ... , and for  the dynamic equation w e  obtain 

(55) 



Our procedure is the same as it was with equations (44) and (45): s t a r t i n g  
with n = O  w e  compute the b(”’s by sa t i s fy ing  (55) a t  M collocation points,  
the a“”s  by sat isfying (56j a t  N collocation points,  and so on, i n  turn,  
u n t i l  convergence is attained. 

j 

Numerical Results. L e t  us consider, f o r  example, the case where X = l  and 
c=0.02  . 

W e  f i x  our collocation scheme by choosing M = 6  , with t h e  corresponding 
shape collocation points 

x j  = 0.03, 0.1, 0.25, 0.45, 0.65, 0.9 

for  j = l ,  ... , 6 respectively: and N = 1  , for  simplicity,  with the corres- 
ponding gama collocation point 5 = 0.1 . 

As our matching functions w e  choose 

f j (X)  = x li 

g j  ( x )  = X+(X - x)2 

The form of g1 ensures 
as x - 0  and Y s - C  4 

a j = 1, ... , 6 (57) 

, j - 1  (58) 

the sa t i s fac t ion  of both end conditions: Ys = O(x-*) 
as x - x .  

Start ing with .;”’ = 0 , br = 0.1 and b“’ = 0 for  j # 2 , the i t e r a -  
t ion is found t o  be more slowly convergent than i n  the  out-of-ground-effect 
case. The streamline pat tern and slipstream shape corresponding t o  the eighth 
i t e r a t e ,  which appears t o  have s e t t l e d  down t o  within about one percent, a re  
shown i n  Fig. 16; the shape collocation points a r e  indicated (on the sl ipstream) 
by dots.  The corresponding slipstream v o r t i c i t y  is defined by the value 

j 

= 0.022 , so that 

( 5 9 )  Y;) = c 4 [l+ 0.022X-+(l-x)2] 
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x =  0 

x-x.1 

F i g u r e  16. Resulting Flow Field for Numerical Example 
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Quali ta t ively,  the r e s u l t s  i n  Fig. 16 appear t o  be q u i t e  reasonab1.e com- 
pared w i t h  the smoke visual izat ion s tudies  of Fradenburgh (Reference 11) - 
except for the absence of a dead-air dome beneath the  hub, predicted by Heyson 
(Reference 1 2 )  and observed by Fradenburgh. 
s i n c e  our blade c i rcu la t ion  is assumed to be constant all the  way down t o  
r = 0' , so t h a t  t he re  are no t r a i l i n g  vort ices  of reverse s t rength emitted 
over the inboard portion of the blades. 

This is to be expected, however, 

Quant i ta t ively,  we h e s i t a t e  t o  claim a leve l  of accuracy comparable t o  t h a t  
obtained i n  the out-of-ground-effect case s ince only a s ing le  gamma col locat ion 
point w a s  used. We did,  i n  f ac t ,  run cases with N = 6  o r  more, bu t  unsat is-  
factory "wiggles" began to  appear i n  both ys and T . We a t t r i b u t e  t h i s  to 
our inabi l i ty  t o  prescribe a s u f f i c i e n t l y  "natural"  family of g matching 
functions. 

j 

w e  point out t h a t  our previous statement "For the static condition the 
streamline pat tern is v i r t u a l l y  independent of C ' I ,  pertaining to the  out-of- 
ground-effect case, i s  equally va l id  f o r  the ground-effect case. 

CONCLUSIONS 

The inviscid flow f i e l d  induced by a ro tor  i n  ground e f f e c t  is  found, based 
upon an actuator disk model with a constant c i r cu la t ion  d is t r ibu t ion .  The gov- 
erning nonlinear in tegra l  equations are solved by a systematic i t e r a t i v e  scheme 
which is  similar t o  the Newton-Raphson method for  the solut ion of nonlinear 
algebraic equations. 

F i r s t ,  the  out-of-ground-effect i i m i t  is considered i n  d e t a i l .  The i t e r a -  
t ion  is found to be rapidly convergent and the r e s u l t s  a r e  shown t o  be q u i t e  
accurate, except possibly i n  the  immediate neighborhood of the blade t i p s .  
Specifically,  there i s  some question as to  whether or not the axial inflow should 
be constant over the blade radius o r ,  equivalently,  whether o r  not the  i n i t i a l  
sl ipstream contraction should be purely r a d i a l .  This point  i s  of some importance 
because of the square-root s ingu la r i ty  i n  the  sl ipstream v o r t i c i t y  a t  the " l i p "  
of the slipstream. That is, the axia l  inflow (which is cruc ia l  from the point  
of view o f  blade design) through the t i p  portion of the blade w i l l  be bounded 
i f  the i n i t i a l  contraction is  purely r a d i a l ,  and unbounded i f  it is  not: In 
any case, it seems c lear  t h a t  our r e s u l t s  a r e  qui te  accurate except, possibly, 
i n  the imrnediate neighborhood of the blade t i p .  

Results f o r  the ground e f f e c t  case look e n t i r e l y  reasonable compared with 
the flow visualization s tudies  of Fradenburgh (Reference ll), although we cannot 
claim a level of accuracy as high as i n  the out-of-ground-effect case. 

In e i ther  case, i n  ground e f f e c t  o r  not,  it is shown t h a t  for  the s t a t i c  
condition the streamline pa t t e rn  is v i r t u a l l y  independent of the t h r u s t  coe f f i c i en t  
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More precisely,  it is exactly independent of the th rus t  coe f f i c i en t  - if the  
e f f e c t s  of s w i r l  are neglected. 
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APPENDIX 

Listing of the Computer Codes 

On the following pages are Fortran l i s t i n g s  of the two computer codes, 
ROTORIGE ( f o r  the in-ground-effect case) and ROTOROGE ( fo r  the out-of-ground- 
e f f e c t  case). 
w h e r e  N = 1  , t o  be consis tent  with the  numerical example i n  the t e x t ,  and does 
not apply f o r  N 22 . 

Actually, the ROTORIGE code is presented fo r  the spec ia l  case 

Of the input variables (see the Common Statements i n  ROTORIGE) only "ACC" 

requires further description. If ,  fo r  example, ACC = 0.01 the i t e r a t i o n  w i l l  
proceed u n t i l  both T("+l) and ycn+l) agree w i t h  t h e i r  previous values, T ( n '  and 
yen) , a t  each of the p r in t -ou t  x ' s  (e.g. Fig. 8 )  t o  within one percent o r  
better - o r  u n t i l  n = "NITER" , whichever occurs f i r s t .  

Regarding the speed of the calculation, w e  point  ou t  t h a t  fo r  the numerical 
examples presented i n  the  t e x t  the  machine t i m e  per i t e r a t i o n  (on the  CDC 1604) 
w a s  30 seconds f o r  ROTORIGE, and one minute and 30 seconds fo r  ROTOROGE. 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PROGRAM R O T O R I G E  

ROTOR I N  GROUND E F F E C T  ( N A S I - 6 3 4 9 )  
F O R M U L A T I O N  U S E S  ONE ( 1 )  C O L L O C A T I O N  P O I N T  FOR T H E  
D Y N A M I C  (GAMMA) EQUATION.  

D E F I N I T I O N  O F  I N P U T  V A R I A B L E S  
IM a 
I D  = 
I Y  = 
MM 
NN = 

N I T E R  = 
cc = 

C A P X  = 
ACC = 

xs = 
XG = 

R =  
A =  

MONTH O F  YEAR I N  INTEGER FORM. 
D A Y  OF MONTH I N  I N T F G E R  FORM. 
L A S T  TWO D I G I T S  O F  YEAR I N  I N T E G E R  FORM. 
NO. O F  C O L L O C A T I O N  P O I N T S  FOR SHAPE EQUATION,  
NO. O F  C O L L O C A T I O N  P O I N T S  FOR GAMMA EOUATION.  
MAXIMUM NO. O F  I T E R A T I O N S  TO BE ATTEMPTED. 
L O A D  I NG COEFF I C  I ENTa 

CONVERGENCE C R I T E R I O N  I N  P E R C E N T / 1 0 0  
N O N - D I M E N S I O N A L  A X I A L  C O O R D I N A T E S  OF SHAPE C O L L O C A T I O N  P O I N T S .  
N O N - D I M E N S I O N A L  A X I A L  C O O R D I N A T E S  OF GAMMA C O L L O C A T I O N  P O I N T S .  
I N 1  T I  A L  SHAPE C O F F F I C I F N T S .  

NON-DIMENSIONAL DISTANCE FROM GROUND PLANE TO PROPELLER PLANE. 

I N I T I A L  GAMMA C O E F F I C I E N T S .  

E X T E R N A L  FJ 
TYPE R F A L  L H S  
COMMON/ADDFD/FZ(SO)  
C O M M O N / C O E F S / A ( S O ) * B ( 5 0 )  
COMMON/INPUT/CC*ALPHAIC4PX 
COMMON/INTGND/NGEES*TT~ZZ~N~K 
COMMON/MATRIX/RHS(S0*50) * L H S ( S O r  1 ) 
COMMON/NUMBERXS/NXS*NXG 
C O M M O N / P R I N T / X S ~ 5 O ~ ~ X G ~ ~ O ~ * X P ~ 5 O ~ * S R ~ 5 O ~ * S C ~ 5 O ~ ~ I T E R ~ ~ M ~ l D ~ ~ Y  
COMMON/SAVE/NP* I N D E X v S R S ( 5 0 )  * S C S  ( 5 0 )  

1000 F O R M A T ( 4 I S )  
1010 F O R M A T ( l O F 8 . 5 )  
1020 F O R M A T ( l H O * 2 8 H I N I T I A L  C O N D I T I O N S  - A T  M O S T * I 3 * 1 4 H  I T E R A T I O N ( S 1  

1030 F O R M A T ( l H O * 1 9 H U N I F O R M  ACCURACY O F 1 F 8 . 5 r 1 6 H  P E R C E N T  IS NOT 9 

* l8HWILL BE ATTEMPTED.) 

* 4 7 H A T T A I N F D  FOR S L I P S T R E A M  R A D I U S  AND C I R C U L A T I O N  
* 1 4 H D I S T R I B U T I O N S . r / * 8 H  AT M O S T * 1 3 * 1 9 H  MORE I T E R A T I O Y ( S )  
* 1 R H W I L L  BF ATTFMDTFD.) 

1040 F O R M A T ( I H O * 1 9 H U N I F O R M  ACCIJRACY 0 F 1 F 8 . 5 ~ 1 2 H  PERCENT IS 
* 4 7 H A T T A I N E D  FOR S L I P S T R E A M  R A D I U S  AND C I R C U L A T I O N  
* 1 4 H D I S T R I B U T l O N S ~ r / * 2 5 H  I T E R A T I O N  I S  TERMINATED.)  

1050 F O R M A T ( 1 H O t l 9 H U N I F O R M  ACCURACY O F * F 8 * 5 r I 6 k l  P E R C E N T  IS NOT t 

4 7 H A T T A I N E D  FOR S L I P S T R E A M  R A D I U S  AND C I R C U L A T I O N  
i t  1 4 H D I S T R I R U T I O N S . * / * 2 5 H  I T F R A T I O N  IS TEQMINATED.) 

A C C P s  1 OO.O*ACC 
C A L L  OUTPUT 
P R I N T  1 0 2 0 . N I T E R  
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40 

50 

S C A L L  T O P R O T ( Z Z )  
S C A L L  AEONS ( I )  

60 

B O  
90 

DO 4 0  f = l * N  
Z Z = X S  ( 1 ) S C A L L  T O P E O T ( Z Z )  
C A L L  L f M f TCHK S C A L L  BEONS ( f )  
CONT I NU€ 
C A L L  M A T f N V ( R H S . N * L H S t l t O E T )  
DO 5 0  J-1 rN  
B ( J ) = L H S ( . ' t l )  
CONT I NU€ 
N=NXG 
DO 60 l r l r N  
ZZ=XG ( f 
C A L L  L I M I TCHK 
CONT I NUE 
C A L L  ACOFFS 
C A L L  OUTPUT 
DO 90 l r 21NP 
CACC=ACC*SC I f  1 S T A C C = A C C * S R ( f )  
I F  (ABSF(SC(f)-SCS(f))-CACC) 80r80r100 
IF 90990r 100 
C O N T I N U E  
GO TO 130 
L E F T r N f  T E R - I  TER S I F  ( L E F T )  1 4 0 r 1 4 0 r 1 1 0  
P R f N T  1 O~OIACCPILEFT 
CONT f NUE 
P R f N T  1 0 4 0 r A C C P  S GO TO 10 
P Q f N T  ~ O ~ O I A C C P  S GO TO 10 
FND 

( A B S F  (SR ( I 1-SR.S ( I ) I - T A C C  1 

SUBROUT I NE AEONS ( I ) 
EXTERNAL A J f N T * A K I N T * A L l N T  
EXTEQNAL G J  
C D M M O N / A S P E C / A J ( 2 ) r A K ( 2 ) t A L o r F Z f r C Z Z ~ G Z Z ~ A Z Z ~ ~ Z Z  
COMMON/COEFS/A ( 5 0  1 * R (50 ) 

COMYON/fNTGND/NGFFSrTTrZZ~~rK 
C A L L  SHAPE (22 TT S C A L L  F A C T O R ( Z Z * F Z Z )  
GZZ=G J ( ZZ ) S F F I C C - ( C C / ( 2 . O + T T ) ) * * 2  
AJ(I)'-FF*TT/(2.O*CC*FZZ) S A K ( f ) = A L ( I ) = O * O  
C A L L  O N E f N T G L ( A J f N T * A J (  1 ) )  S C A L L  O N E I N T G L ( A K f N T * A K ( f ) )  
C A L L  O N E f N T G L ( A L l N T r A L ( f  ) )  

END 

COMMON/iNPUT/CC*ALPHAICAPX 
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F U N C T I O N  A K I N T ( 2 )  
E X T E R N A L  G J  
C O M M O N / A S P E C / A J ( E ) * A K ( ~ ~ ~ A L ( ~ ) ~ F Z Z ~ G Z Z ~ A Z Z ~ ~ Z Z  
COMMON/INTGND/NGFESITT~ZZ~N~K 
C A L L  S H A P E ( Z r 1 )  S C A L L  F A C T O R ( Z e F 2 )  
C A L L  G E E S ( l * T T r T ~ Z Z * Z r G ~ G T T )  S A K I N T ~ G T T * F Z * ( G Z Z + G J ( Z ) )  
END 

S U R R O U T I N E  O E O N S ( 1 )  
E X T E R N A L  B INTrFJ  
T Y P E  R F A L  L H S  

COMMON/ I NPUT/CC A L P H A  C A P X  
COMMON/INTGND/NG~S~TT*ZZ~N~K 
C O M M O N / M A T R I X / R H S ( 5 0 r 5 0 ) . L H S ( S O l l )  
NN=N+t S C A L L  S H A F F ( Z 2 r T T )  

NGEES= 1 S C A L L  O N E I N T C L ( B I N T I G T T G )  
NGEE S=3 S C A L L  O N E I N T G L ( R 1 N T r G G M )  
DO 30 J= l rNN 
K= J S 1F (J-NN) 10120r20 

R H S ( I ~ J ) ~ - S Q R T F ( C C ) + F J ( C A P X . J ) + d L P H A + T E R M + G T T G  
GO TO 30 

PO RHS(I*J)=GGM+ALPHA+(TT-l*O)+GTTG 
30 C O N T I N U F  

L H S  ( I 
FND 

COMMON/ADDFD/FZ(SO) 

GTTG=GGMPO.O 

l o  T F R M = F J ( Z Z I K ) / ( C A P X - Z ~ ) - F Z ~ / C ~ P X  

1 )=RHS ( I *NN) 

F U N C T I O N  B I N T C Z )  
F X T E R N A L  FJ 
C O M M O N / d D D F D / F Z ( W )  
COMM~N/ INPUT/CC*ALPHAICAPX 
C O M M O N / I N T G N n / ~ ~ F F S . T T . Z t . N I K  
C A L L  SHAPE ( Z i t  1 S C A L L  V O R T F X ( Z * C A M )  
C A L L  F A C t O R ( 2 t F A C )  
C A L L  GEES(NGEES.TT IT IZZ IZ IC~C~T)  
GO T O  ( 1 0 * 3 0 * 2 0 ) * N G E E S  

S CAM=FAC+GAM 

l o  R I N T = G T T + G A M  S GO TO 30 
20 RINT=-G+GAM 
30 END 

S U R R O U T I N E  F A C T O R ( X * F A C )  

COUMON/COEFS/A(SO) .B(50 )  
COWMON/INPUT/CCIALPHAICAPX 
COMMON/NUMRERXS/NXS*NXG 
TPs0.O S 801 nCAPX-X 
06 l o  T r l r N X S  
T P ~ T P + B ( I ) + ( F P J ( X t I ) / ~ O T + F J ( X ~ I ) / B O T * + 2 )  

F A C = S Q R T F (  1 sO+TP++2) 
END 

FXTEPNAL FJIFPJ 

10 C O N T I N U E  
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F U N C T l O N  F J ( X * J )  
FJ=X++J 
END 

S GO T O  30 

SlJBRDUTINE G ~ F S ( N U M I T T I T I Z Z I Z I ~ ~ G T T )  
COMMON/lNPOT/CC r A L P H A  r CAPX 
01=3.14 149P7 
h X =  ( 7 7 - Z  ) *+2 
DZ=(ZZ-2 .O*CAPX+Z)**2  
AQGA=l.O+(DT+DX)/(2.O*TERM**2) 
AQGB=l.O+(DT+DZ)/(2.O*TERM**2) 
GO T O  ( 1 0 1 2 0 r l O ) r N U M  

R O T A r A R G A + * 2 - I  .O 
10 DT=TT**2-T**2  

A A =  (DX+DT ) *QPA/  ( B O T * T  ) 
E E = ( D Z + D T ) + Q P B / ( B O T + T )  
GTT=(AA+BB)/ROTA-(EE+DD)/ROTR 

20 G r T E R M + ( O P A - O P R ) / ( 2 . 0 * P l  ) 

30 FNO 

F U N C T I O N  G G G ( 2 )  
COMMON/lNTGND/NGEESrTTrZZ~NrK 
C A L L  S H A P E ( 2 r T )  
C A L L  F A C T O R ( Z r F A C )  
C A L L  
GGG=GG+G 
FND 

G F F S  (2 * T T r  T r  72.2 r GG *DUM 1 

S D T r ( T T - f ) + * 2  
S T E R M = S Q R T F ( T T * T )  
B C A L L  QPMHALF(ARGAIOPA*QMA)  
5 C A L L  Q P M H A L F ( A R G B r Q P B r Q M B )  

B BOT=B.O+PI*TERM 
J ROTR=ARGB*X2-I .O 
S B B n ( D X - D T ) * O M A / ( B O T * T T )  
5 D D = ( D Z - D T ) * O M B / ( B O T * T T )  
B GO TO ( 3 0 * 2 0 r 2 0 ) r N U M  

F U N C T l O N  G J ( X )  

G J = ( C A P X - X ) + * 2 / S Q R T F ( X )  
FNI? 

COMMON/~NPUT/CCIALPHAICAPX 

S C A L L  V O R T E X ( Z r G )  
B G=FAC*G 
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SUBROUTINE M A T I N V ( A ~ N ~ B ~ M ~ D E T E R M )  
D I M E N S I O N  I P I V O T ~ 5 ~ ~ * A ~ S O * S 0 ~ ~ 8 o . I N D € X ~ 5 O r 2 ~ r P ~ V O T ~ 5 O ~  
D E T F R M = I o O  
DO 10 J n l t N  
I P I V O T (  J ) = O  

10 C O N T I N U E  
t70 200 I * l r N  
AMAXaO 0 
t7O 60 J r l r N  
1F ( I P I V O T ( J ) - l ‘  20r60r20 

?O 00 50  K = l r N  

30 IF ( A R S F ( A M A X ) - A R S F ( A ( J r K ) ) )  40rE50r50 
IF ( IPIVOT(K)-I ) 3o rqo r?4n  

40 I R O W r J  S I C O L U M P K  

50 C O N T I N U E  
60 C O N T l N U E  

I P I V O T (  ICOLUM)=IP1VOT(ICOLUM)+l 5 IF ( I R O W - I C O L U M )  70r110170 
7 0  n F T F R M r - D F T F R M  

00 80 L = l r N  
SWAP=A( I R O W r L )  
A (  I C n L U M t L ) = S W A P  

I F  ( M )  1 1 O r 1 1 0 r 9 0  

SWAP=@,( I R O W r L )  
R ( I C O L U M r L  ) = S W A P  

A M A X e A ( J r K )  

S A ( I ROC1 rL ) = A  ( I C O L O M  rL ) 

8” C O N T I N t J E  

on 00 1 0 0  L = l r M  
B B ( IROK r L  )=E ( I C O L U M r L  ) 

1 0 0  C n N T l N U E  
1 1 0  I N D E X ( I . 1  )=TROW 

I N D E X (  I r 2  ) =  I C O L U V  
DETERM=DETERM*P I VOT ( I 1 
DO 1Po L = l r N  
A ( I C O L U Y r L  ) = A  ( I C O L U M  rL ) / P I V O T  ( I ) 

I F  ( M )  1 5 0 r 1 9 0 r 1 7 0  

5 P I V O T  ( I ) = A  ( I C O L U M  r I C O L U M  1 
B A ( I C O L U M r  I C O L U M )  = 100 

1 CONT I NUE 

B ( I COLUH L ) -B ( I COLUM *L ) /P I VOT ( I ) 

1-30 DO 140 L = l r M  

140 CONT INCJF 
l e 0  DO ?Oo L l n l r N  

160 T = A ( L l r  I C O L U M )  5 A ( L l r l C O L U M ) = O ~ O  
I F ( L 1 - I C O L U M )  1 6 0 * 2 0 0 * 1 6 0  

DO 170 L = l r N  
A (L1 r L  ) = A  (L 1 r L )-A ( I COLUM r L )*T  

170 CONT I N V F  

180 00 100 LZ1.M 

1 90 CONT 1 NtJE 
2c)O C O N T I N U E  

IF  ( M )  2 0 0 1 2 n 0 1 1 A 0  

E(L1 tL )=B (L1 rL ) -B (  I C O L U M * L ) * T  

DO 2S0 I x l r N  
L=N+l- I  
I F  ( I N D E X ( L * I ) - I N D E X ( L r 2 ) )  2 1 0 r 2 3 0 r 2 1 0  

DO ?PO K n l r N  
SWAP=A ( K r  JROW 1 B A ( K r J R O W ) = A ( K * J C O L U M )  
A ( K r  JC0LUM)xSWAP 

2 l c  J R O W = I N D E X ( L r l )  5 JCOLUMZ I N D E X  (L r 2 ) 

220 C O N T I N U F  
230 C O N T I N U F  
P4@ QFTORN 

FND 
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S U B R O U T I N E  NGAUSS(BIA*FX~NTIME*INTEGRAL) 
TYPE R E A L  I N T E G R A L  
D1 MENS I ON R (5 ) rU  ( 5 )  
DATA ~ R ~ 0 o 1 4 7 7 6 2 1 1 2 4 ~ 0 o 1 3 4 6 3 3 3 5 9 7 ~ 0 o 1 0 9 5 4 3 1 8 1 3 * ~ 0 0 7 4 7 2 5 6 7 4 5 ~ *  

* 0 . 0 3 3 3 3 5 6 7 2 1 5 ) r  
* ~ U ~ 0 o 0 7 4 4 3 7 1 6 9 5 ~ 0 o 2 1 6 6 9 7 6 9 7 1 ~ 0 o 3 3 9 7 0 4 7 E 4 1 ~ 0 0 4 3 2 5 3 1 6 E 3 3 ~  
* 0 0 4 8 6 9 5 3 2 6 4 3 )  

INTEGQAL-O 0 
DO 20 J = l r N T I Y F  
X L = A + (  J-1 )*(B-A ) / N T I M E  S XU=B-INtlME-J)+(B-A)/NTIME 

TEMPrO.0 
O r X U - X L  s S = ~ X U + X L ) / 2 . O  

DO 10 K n l t 5  
T E M P = T E M P + R ( K ) * ( F X ( S + D * U ( K ) ) + F X ( S - D + U ( K ) ) )  

TEMP=TEMP*D S I N T E G R A L = I N T E G R A L + T E M P  

FND 

10 C O N T I N U E  

20 t O N T I N I J E  

SUBROUTINE ONEINTGL(FAIA) 
COMMON/LIMITS/TOP(5)rBOTorNCD(~) 
DO 20 I = l r 5  
IF  (ABSF~TOP(I)-ROT~I))-O~OOOOOOl) 20920*10 

10 C A L L  N G A U S S ( T O P ( I ) ~ B O T ( I ) r F A . N C D ( l ) r A A )  

20 CONTINOF. 
A=A+AA 

END 

SUBROUT I NE OIJTPUT 
COYMON/ADDED/FZ ( 5 0 )  

COMMON/INPUT/CC*ALPHA*CAPX 
COMMON/ INTGND/NGEESITT IZZ IN IK  
COMMON/NUMBERXS/NXS*NXG 
C O M M O N / P R I N T / X S ( 5 0 ~ ~ X G ~ S O ~ ~ X P ~ ~ O ) ~ S R ~ ~ O ~ ~ S C ~ 5 O ) ~ ~ T E R ~ I M ~ I D ~ ~ Y  
COMMON/SAVE/NP* INDEX.  SRS ( 5 0  

COMMON/COEFS/A(SO)*B(~~) 

t SCS ( 5 0  ) 
1000 F O R M A T ( l H 1 * 2 5 X * 3 2 H R  0 T 0 R I N C R 0 U N D 

* 35HE F F E C T ( N A S 1 - 6 3 4 9 ) * 5 X * l H ( * I 2 * l H / *  
* 1H/*  I ? *  1 H ) )  

* 4H O . O * / * 3 6 X *  
* 2 4 H L O A D I N G  C O E F F I C I E N T *  C = * F 7 0 4 r / r 3 6 X *  
* l 6 H H U B  R A D I U S  = 0.0) 

* 29HGAMMA C O L L O C A T I O N  P O I N T S *  N =*13*/) 

1 0 1 0  FORMAT(lHO*35X*29HDAMPING C O E F F I C I E N T S I  ALPHA t*F5.2*9H BE 

1 C 2 c  F O R M A T ( l H 0 * 2 1 X * 2 9 H S H A P E  C O L L O C A T I O N  P O I N T S .  M = * 1 3 1 1 2 X *  

1330 F O R M A T ( 1 H  r 2 B X 1 5 H X  S U B * I 3 * 2 H  = * F 8 . 4 . 2 6 X * S H X  S U B I I J ~ ~ H  =*F804)  
1040 F O R M A T ( 1 H  r 7 2 X . S H X  S U B o 1 3 * 2 H  rqF8.4) 
1 0 5 0  F O R M A T ( I H  r 2 A X e S H X  S U B t 1 3 . 2 H  = o F R . 4 )  
1060 F O R M P ~ ( I H ~ I ~ ~ H I T E R A T I O N  N O . r I T J * / )  
1070 F O R M A T ( 1 H  * 7 9 X * 3 5 H S L I P S T R E A M  S L I P S T R E A M  C I R C U L A T I O N * / r 7 X *  

* 1RHSHAPE C O E F F I C I E N T S ~ ~ ~ X I I ~ H G A M M A  C O E F F I C 1 ~ N T S r l l X t l H X *  
* I l X ~ 3 O H R A D I U S r  T GAMMA SUB S r / )  

* 4 H o O O O *  1 1 X ~ 6 H 1 0 0 0 0 0 ~ F 1 8 0 4 )  
1071 F O R M A T ( 1 H  * 4 X * l O H B  SUB 1 = * F 1 2 0 4 * I C ' X * l O H A  SUB 1 = * F 1 2 0 4 * 8 X *  

1072 F O R M A T ( 1 H  r 4 X 1 1 0 H A  SVB I = * F I T . ~ ~ ~ C ' X I ~ @ H A  SUB 1 * * F 1 2 0 4 * 8 X *  
* 4 H 0 00 * 1 1 X 6H I -0 000 1 OX 8H I NF I N I T Y  ) 

1080 F O R M A T ( 1 H  * 4 X + 5 H B  S U B * I 3 * 2 H  + r F 1 2 . 4 * 1 0 X * 5 H A  S U B v 1 3 r 2 H  = * F l 2 0 4 *  
* F 1 2 0 3 ~ F 1 7 . 4 r F 1 8 0 4 )  

1 C 9 O  FOQMAT(IH 1 4 X 1 5 H a  S U B * 1 3 * 2 H  = r F 1 2 . 4 r l O X * S H A  S U B * 1 3 * 2 H  = * F 1 2 * 4 *  
* 6 H C A P  X = . F 6 . 3 . 9 X ~ 8 H I N F I N I T Y I F 1 8 . 4 )  

1 1 0 3  F O R M A T ( 1 H  r 4 X 1 5 H B  S U B * 1 3 * 2 H  = * F 1 2 . 4 r l O X * 5 H A  S U B * 1 3 * 2 H  r r F 1 2 . 4 )  
1 1 1 0  F O R M A T ( 1 H  r 4 X * 5 H B  S U B e I 3 . 2 H  ~ ~ F 1 2 0 4 ~ 3 2 X ~ F 1 2 ~ 3 * F 1 7 0 4 * ~ 1 ~ ~ 4 )  

40 
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112c F O R M A T ( 1 H  r 4 X r 5 H E  s U B r 1 3 t 2 H  P r F 1 2 e 4 r 3 2 X 1  

1130 F O R M A T ( 1 H  r 4 X r 5 H B  S U E r 1 3 r 2 H  s r F 1 2 . 4 )  
1 1 4 0  F O R M A T ( 1 H  r 3 6 X r 5 H A  S U B r 1 3 r 2 H  ~ r F 1 2 . 4 r F 1 2 . 3 r F 1 7 . 4 r F r B . 4 )  
1 1 5 0  FORMAT(  1H r 3 6 X r 5 H A  SUB*  I 3 r 2 H  I r F 1 2 0 4 r  

* 6 H C A P  X=  rF60 3 r 9 X  r 8 H I N F I  N I TY rF18.4 ) 

* 6 H C A P  X=  r F6 .319X r BHINF 1 NT T Y  rF 18.4 ) 

1160 F O R M A T C I H  r 3 6 X r S H A  S U B r I 3 r 2 H  =rF12.4) 
1170 F O R M A T ( 1 H  r S R X r F 1 2 . 7 r F 1 7 . 4 r F l R . 4 )  
1 1 8 0  F O R M A T ( 1 H  r 5 8 X r 6 H C A P  X = * F 6 . 3 r 9 X r 8 H I N F  

NP3.26 
no 60 1-2rNP 
GO TO ( S r 4 ) r l N D E X  

GO TO 50 
4 S R S ( I ) = S R ( I )  s scs 

T TF ( 1 - 5 )  20r20r10 
10 IF  (1-22) 3 O r 3 0 r 4 0  

N I T Y r F I 8 . 4 )  

20 J=2*1-3 S X P ( I ) = O . O l * J  
GO T O  50 

30 J= I -4  S X P ( I ) = 0 . 0 4 * J  
GO Tn SO 

40 Jx l -22  S X P ( 1 ) = 0 . 9 + 0 . 0 2 + J  
50 C A L L  S H A P E  ( X P  ( I 1 r SR ( I ) ) S C A L L  VORTEX ( X P  ( I ) r SC 
60 CONTTNIJE 
65 P R I N T  1000rIMrIDrIY S P R I N T  1 0 1 0 e A L P H A r C C  

70 M-NXS S GO TO 90 

90 P R I N T  

P R I N T  I @ 2 0 r N X S r N X G  s IF (NXS-NXG) 7or70re 

eo MINXG 
I O 3 O r  ( T r X S  ( I ) r T 9XC ( I )  r I 1 r M )  

I ) ?  

H=M+ 1 S TF (NXS-NXG) 1 0 0 r 1 2 0 r 1 1 0  

OQ I NT 

I F  ( N X S - h A G )  1 3 0 r 1 4 0 r 1 4 0  

100 P R I N T  1 0 4 0 .  ( I r X G ( 1  ) e  I = M r N X G )  S GO TO 120 
1 I 0 
1 P 3  P R I N T  I n B O r I T E P  S P R l N T  1070 

130 TF (NXG-NP)  1 5 0 r 1 5 0 r 1 6 0  
140 I F  ( N X S - N P )  1 5 0 r I S O t 1 7 0  
I S C  M=NP+l  
160 M=NXG 
170 M=NXS 
180 K O U N T = l  
1 8 1  T E M P = S O R T F ( C C )  

GO TO 143 
I A ?  P R I N T  1 0 7 2 r C l ( l  ) r A ( l )  
187 DO ?Q3 1 = 2 r V  

190 I F  ( I - N X G )  20nr2nn,210 

210 I F  (1-NP) 290r290r300 
220 I F  ( I - N X G )  230r230r240 

1 (rqc r ( I r X S  ( 1 ) r I t M  r NXS 1 

IF (T -NXS)  1 9 o ~ 1 0 0 ~ 2 2 0  

200 IF (I-NP) 25nr2qnr26o 

S GO TO 180 
S GO TO 100 

S TF ( I T E R )  1 8 l r l ! 3 l r 1 8 2  
S PRINT 1 0 7 1 r R ( I ) r A ( l ) r T E M P  

230 
24 @ 
250 

260 
270 

280 
290 

700 

1F (I-NP) 330r330r340 
IF  ( I -NP)  370r370r380 
P R I N T  l O € I O r I r B ( I ) r I r A  
GO T O  390 
GO TO ( 2 7 0 r 2 R O ) r K b U N T  
P Q I N T  1 0 9 0 r I r 9 ( I ) t I r A  
K O U N T r 2  
P R I N T  1 1 0 0 r T ~ 8 ( 1 ~ * 1 * A  
P R T N T  I ! l O r T r R ( I ) t X P (  
Gd TO 390 
GO TO ( S I O r 3 T O ) r K O U N T  

310 P R I N T  1 1 2 0 t T r E ( I  )*CAPXITEMP 
K O U N T - 2  S GO TO 390 

320 P R I N T  ll30r1rB(T) S GO TO 390 
330 P R I N T  

340 GO TO ( 3 5 O r 3 6 0 ) r K O I J N T  

1 1 4 0 r  I r A ( I ) r X P  ( I )  r SR( I ) r SC ( f ) 

GO TO 390 
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S GO TO 390 
S GO T O  390 
S GO TO 390 

K = S Q R T F ( 2 . O / ( Z + l . O ) )  
€ L E ~ 1 ~ 0 ~ 0 0 0 0 0 0 0 0 0 + ~ 4 4 3 2 § ~ 4 ~ 4 6 3 * A ~ + ~ 0 6 2 6 0 6 0 1 2 2 0 * A 2  

* + . O 4 7 5 7 3 A 7 5 4 6 * A 1 + . 0 1 7 1 ~ 5 O 6 4 ~ 1 * A 4 +  
* ~ ~ 2 4 9 9 A ~ h ~ 7 1 O * A 1 + ~ O 9 ? O ~ l f l O O l 7 * A 2 +  
* . 04069697526*Al+ .00526449639*A4) *ALO 

ELK=1.38629436112+.09666344259*A1+.035900~2383*A2 * + ~ 0 3 7 4 2 5 6 7 7 1 3 * A 1 + ~ 0 1 4 5 1 1 9 6 7 1 2 * A 4 +  
* ~ ~ 5 0 0 0 0 0 0 0 0 0 0 + ~ 1 2 4 9 A 5 ~ 3 5 9 7 * A 1 + ~ 0 6 8 ~ 0 2 4 l 3 5 7 6 * A 2  
* +~0332835S346*AI+~O04417A7012+A4)+ALO 

OPH=7+Y*FLK-R*FLE B QMH=K*ELK 
F? 3 
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I GO T O  160 
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i PROGRAM ROTOROGE 
C 
C ROTOR OUT O F  GROUND E F F E C T  ( N A S I - 6 3 4 9 )  
C 

F X T E R N A L  FJ 
T Y P F  R F A L  L H S r L A P R D A  
C O M M O N / A D D E D / F Z ( S O ) r T l  
C O M M O N / C O E F S / A ( S ~ ) ~ B ( ~ ~ )  
COMMON/INPUT/LAMBDA~CC~ALPHA.BFTA 

COMMON/NUMEEQXS/NXSINXG 

COMMON/1NTGND/NGEESrTTrZZ~NrK*Gl  
COMMON/MATRIX/RHS(5Or5O)~LHS(5Orl) 

C O M M O N / P R I N T / X S ~ 5 O ~ r X G ~ 5 O ) r X P ~ 5 O ~ r S R ~ 5 O ) ~ S C ~ 5 O ~ r l T E R r l M r l D r l Y  
COMMON/SAVE/NP~lNDEXISRSOrSCS(SO)~SCS(50) 

1 0 0 0  FORMAT 
1 0 1 0  FORMAT 
1 0 2 0  FORMAT 

1030 FORMAT 

it 

1 0 4 0  FORMAT 

1050 FORMAT 

1060 FORMAT 

* 
* 
* 
* 

1070 FORMAT * 
* 

415)  
1 OFB.5) 
l H O ~ 2 8 H I N l T l A L  C O N D I T I O N S  - A T  M O S T * l 3 r 1 4 H  I T E R A T I O N ( S )  r 

1 A H W l L L  A F  ATTEMPTFn.  1 
l H O r 1 9 H U N I F O R M  ACCURACY O F * F 8 * 5 r 1 6 H  PERCENT IS NOT 
4 7 H A T T A l N E D  F O R  S L I P S T R E A M  R A D I U S  AND C I R C U L A T I O N  
1 4 H D I S T R I B U T I O N S . r / r 8 H  A T  M 0 S T 1 1 3 r l 9 H  MORE I T E R A T I O N ( S )  
l8HWlLL BF ATTEMPTED.) 
l H O r 4 7 H R E S U L T S  OF T H I S  I T E R A T I O N  I N D I C A T E  A N  IMPROPER r 
4 2 H S T R E A M L l N E  SHAPE - 1 T E R A T l O N  IS T E R M l N A T E D )  
l H O r 4 7 H R E S U L T S  OF T H I S  I T E R A T I O N  I N D I C A T E  A N  IMPROPER r 
5 O H C I R C U L A T I O N  D I S T R I B U T I O N  - I T E R A T l O N  IS T E R M I N A T E D )  

4 7 H A T T A I N E D  F O R  S L I P S T R E A M  R A D I U S  AND C l R C U L A T l O N  r 
1 4 H D I  STR I B U T  I O N S  ) 

~ H O I ~ ~ H U N I F O R M  ACCURACY O F r F 8 . ! 3 * 1 6 H  P E R C E N T . I S  NOT r 
4 7 H A T T A I N E D  F O R  S L I P S T R E A M  R A D I U S  AND C I R C U L A T I O N  9 

l H O r 1 9 H U N I F O R M  ACCURACY O F r F 8 . 5 . 1 2 H  P E R C E N T  IS 9 

1 4 H D 1  STR I B I J T I O N S .  ) 
1 0 8 0  F O R M A T ( 1 H  * 4 7 H l T E R A T I O N  IS TERMINATED.  D Y N A M I C  AND K l N E M A T l C  * 

* 4 1 H C O N D l T l O N S  ON S T R E A M L I N E  W I L L  BE CHECKED.) 
R F A D  1 0 0 0 r l M * l ~ r l Y  

i o  READ ~ O O O * M M I N N I N I T E R  
20 READ I O I O ~ C C ~ L A M B D A ~ A C C  

R E A D  
NXS=MM 
A L P H A S  1 0 0 
DO 30 I r l r N X S  
R ( I  ) = O o o  

30 C O N T I N U E  
DO 40 I = l r N X G  
A t 1  )=OoO 

4 0  C O N T I N U F  
C A L L  S H A P E ( E r O . O r T 1  1 
G I = S O R T F ( L A M R D A + + 2 + F I  ) -LAMBDA 
I TER=O 
I N D E X =  1 
M = N P + I  
I N D E X L 2  
DO I30 l T E R = l r N I T F R  
flS=TI 
DO 90 I = l r N  
zz=xs ( 1 ) 
C A L L  L I M I T C H K  

50 C O N T I N U E  

1 0 1  Or ( X S  ( 1 1 r 1s 1 r M M )  

CALL M A T I N V ( R H S . N ~ L H ~ ~ I ~ D E T )  
DO 60  J = l  r N  

S IF  ( M M )  190r190r20 

S R E A D  l O l O r ~ X G ( l ) * I ~ l r N N )  
S NXG=NN 
d BETA=O.O 

% F I = C C - ( C C / ( 2 . O * T I ) ) * * 2  

S ACCP=lOOeO*ACC 
S C A L L  OUTPUT 
S SC ( M  ) =SCS(M ) = G I  
S P R I N T  1 0 2 0 r N I T E R  

0 N t N X S  

% C A L L  T O P E O T ( Z 2 )  
S C A L L  BEONSC I ) 
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R (  J ) = L H S (  JI 1 ) 

C A L L  S H A P E ( 2 r O o O * T I  1 S F I ~ C C - ( C C / ( 2 . O * T l ) ) * * 2  
C ~ ' S 0 Q T F ( L A M B D A * + 2 + F I ) - L A M R D A  B N t N X G  
n0 70 1 - 1  tN 
Z Z = X G  ( I 1 S C A L L  TOPBOT ( 2 2  ) 
C A L L  L I M I T C H K  S C A L L  AEONS( I ) 

C A L L  M A T l N V ( R H S * N * L H S * l  r D E T )  
DO A 0  J = l r N  
A ( J  ) = L H S  ( J* 1 ) 

C A L L  OUTPUT 

60 C O N T I N U E  

70 C O N T l N U E  

80 C O N T I N U E  

C A L L  S H A P E ( 1  +O.OSrTTEST)  S IF  (TTEST-1 .0 )  90r140t140 
90 C A L L  V O R T E X ( O . O l * G I r G T E S T )  S IF ( G T E S T - G I )  150*150*100 

100 S Q ( M ) = T I  S S R S ( M ) = T I S  
DO 1 0 2  1 = 2 r M  
CACC=ACC*SC ( I ) S T A C C = A C C * S R ( I )  
1F ( A B S F ( S C  ( 1 ) - S C S (  1 ) I - C A C C )  101 * 101 1 1  0 

101 1F (ARSF(SR(II-SRS(I))-TACC) 102r102r110 
102 C O N T I N U E  

110 L E F T = N l T E R - I T E R  I IF  ( L E F T )  170*170*120 
120 P R I N T  ~ O ~ O I A C C P I L E F T  
130 C O N T I N U E  
140 P R I N T  1040 S GO TO 10 
lcio P R l N T  1050 S GO TO 10 
160 P Q l N T  1 0 6 0 r A C C P  B GO TO 1 8 0  
1 7 0  P R I N T  1 0 7 0 r A C C P  S GO TO 1 A O  
100  PRINT ion0 S C A L L  D Y K l C H C K  

190 F N D  

GO T O  160 

GO TO 10 

SURROUT I NE AEONS ( I ) 

E X T E Q N A L  G J  
T Y P E  R E A L  LHSILAMBDA 
COMMON/ lNPUT/LAMROAtCCIALPHAIBETA 
CO~MON/lNTGND/NGEESrTTrZZ~NrKrGl 
COMMON/LIMlTS/TOP(7)~0OT(7)rNGD~7~ 
C O M M O N / M A T Q I X / Q H S ~ 5 0 r 5 0 ) . L H S ( 5 0 r l ~  
O l M E N S I O N  X I  (400 ) e G T T R ( 4 0 0 )  
D I MENS I ON R ( 5 ) + U ( 5  1 
DATA ~R~0~1477621124~0~1346333597*0~10954~1813~0~07472567450~ 

* 0003333567215)r 
~ U ~ 0 ~ 0 7 4 4 3 7 1 6 9 5 + 0 ~ 2 1 6 6 9 7 6 9 7 1 ~ 0 ~ 3 3 9 7 0 4 1 ~ 4 1 ~ 0 ~ 4 3 2 5 3 1 6 8 3 3 ~  

* 004869532643 1 
C A L L  SHAPE ( 1 r Z Z r  T T  1 B C A L L  FACTOR (22 F A C  ) 
C A L L  V O R T E X ( Z Z * G l r G A M )  0 CON=2.O*GAM**2*FAC 
F F = C C - ( C C / ( 2 m O * T T ) ) * + 2  
NN = N + l  
KK = 0 
no 70 J = l r 7  
IF(ABSF(TOP(J)-BOT(J))-OoOOOOOOl)7O+7O~lO 

10 N T f Y F  = N G D ( J )  
R = T O P ( J )  S A x F I O T ( J )  
DO 60 l l = l r N T l M F  
X L  II A + ( 1 1 - 1 ) * ( B - A ) / N T l M E  S X U  t B-(NTIME-lI)*(B-A)/NTlME 
D XU-XL S S (XU+XL) /EmO 
DO 5 0  L + l * l O  
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K K  = K K + 1  
IF  (L-5 )2O t20q 30 

GO TO 40 
PO JJ L S X I ( K K )  = S + D * U ( J J )  

30 JJ s 1 1 - L  '6 X I ( K K )  = S - D * U f J J )  
40 C A L L  S H A P F ( l * X I ( K K ) r T )  

C A L L  F A C T O R ( X l ( K K ) * R O O T )  
CALL G E E S ( l . T T ~ T ~ Z Z * X I ( K K ) r C 1 C T I C T T I  
GTTRt  K K  = D*R (JJ )*GTT*ROOT 

50 C O N T I N U E  
60 C O N T I N U E  
70 C O N T I N U E  

DO 1 4 0  J z l r N N  
K t J S l F ( J - N N ) R 0 1 9 0 * 9 0  

80 RHS(  I J ) = F F * T T * G J ( Z Z *  J ) / C O N  S GO T O  100 
90 RHS(ltJ)=TT*(LAMRDA+FF*Gl/CON-FF/(FAC*GAM))/Gl 

1 0 0  DO 1 3 0  L S l e K K  

1 1  0 RHS( 1 J) = R H S (  I J ) + G T T R ( L ) * G J ( X I  (L )  J) 
IF  (J-NN ) 1 10 1 2 0 1  1 2 0  

GO TO 130 
1 2 0  R H S ( 1 r J )  R H S ( I * J ) + G T T R ( L )  
130 C O N T I N U E  
140 C O N T t N U F  

L H S (  1 1  1 )o -RHS(  I rNN) 
END 

SlJRROUT INF RFONS ( I ) 

EXTERNAL B I N T e F J  
T Y P F  R F A L  L H S * L A M B D A  
C O M M O N / A D D F D / F Z ( S O ) o T l  
C O M Y O N / ~ N P U T / L A M R D A I C C ~ P L P H A ~ R F T A  

COMMON/MATRIX/RHS(50*50) r L H S ( 5 0 r  1 ) 
NN=N+ 1 !% C A L L  S H A P E t l * Z Z * T T )  

NGFES= 1 S C A L L  O N E I N T G L ( B i N T * G T T G )  
NGEES-3 B C A L L  O N E I N T G L ( S I N T * G G M )  
ADD=GGM+ALPHA* (TT-1.0 ) *GTTG 

C O ~ ~ O N / I N T G N D / N C E E S I T T I Z Z I N I K ~ C ~  

GTTC=GGM=O o 

no i o  J=I *NN 
Y= J S IF  (J-NN) 1012OtPO 

QHS(1~J)=LAMBDA*TT*CON+(LAMBDA+Gl~*Tl*FZ~J~+ALPHA*CON*GTTG 
GO TO 30 

30 C O N T I N U E  

1 0 ' CONzFJ ( 7 7  e 3)  -F7 ( J 1 

20 R H S ( I I J ) ~ ( L A M B D A + G I  )*TI*(l~O-0~5*TI)-LAMBDA*TT*~l~O~O~S*TT)+ADO 

L H S (  I t 1 )=RHS( 1 9  NN) 
END 

F U N C T I O N  B l N T ( Z )  
FXTERNAL FJ  

COMMON/ INPUT/LAMBDAICCIALPHA*BETA 
COMMON/INTGND/NGEES~TT*ZZ*N*K*GI 
C A L L  S H A P F  ( 1 r Z *  T ) S C A L L  V O R T F X ( Z * G I * C A M )  
C A L L  F A C T O R ( Z * F A C )  S GAM=FAC*GAM 
C A L L  GEES(NGFFSrTT*T*ZZ*Z*G*GTT) 

COMMON/ADDFD/FZ(SO)~T I  

GO TO ( I ~ ~ ~ o , ~ ~ ) * N C E F S  
10 R I N T = G T T * G A M  S GO T O  30 
20 R I NT=-G*GAM 
30 FNO 
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SUBROUT 1 NE D Y K  I CHCK 
E X T E R N A L  GTGIGGG 
T Y P E  R E A L  LAMBDA 
COMMON/INPUT/LAMBDA*CC*ALPHA*6ETA 
COMMON/1NTGND/NGEES~TT~ZZ~N~K~GI 
COMMON/MIMBERXS/NXS*NXC 
COMMON/PR I N T / X S  ( 5 0  ) r X G  ( 5 0  ) * X P ( S O  
D I M E N S 1 0 N  X ( 1 9 )  
DATA ~ X ~ O ~ 0 1 r O ~ 0 2 ~ 0 ~ 0 3 * 0 ~ 0 4 ~ 0 ~ 0 5 * 0 ~ 1 0 ~ 0 ~ 1 5 ~ 0 ~ 2 0 ~ 0 ~ 3 0 ~ 0 ~ 4 0 ~ 0 ~ 5 0 ~  

SR (50 SC ( 5 0  ) I T F R e  I MI I DI I Y  

* 0 ~ 7 5 r l ~ 0 0 ~ 1 ~ 2 5 ~ 1 ~ 5 0 ~ 2 ~ 0 0 * 3 ~ 0 0 ~ S ~ 0 0 ~ 1 0 ~ 0 0 ~  

* 35HE F F E C T ( N A S I - 6 3 4 9 ) r S X t l H ( * I 2 * l H / * f 2 e  
* l H / * 1 2 * 1 H ) )  

* F S 0 2 r / t 3 6 X *  
* 2 4 H L O A D I N G  C O E F F I C I E N T *  C = r F 7 . 4 r / * 3 6 X *  * 2 3 H A D V A N C E  R A T I O *  LAMBDA = * F 7 . 4 r / t 3 6 X *  
* 36HNO. OF SHAPE C O L L O C A T I O N  P O I N T S 9  M m r I 3 * / * 3 6 X c  
* 36HNO. O F  GAMMA C O L L O C A T I O N  P O I N T S *  N = r I 3 r / r 3 6 X *  
* l 6 H H U R  R A D I U S  0.0) 

* 4 7 H K I N E M A T I C  ( S T R E A M L I N E )  C O N D I T I O N S  ON S L I P S T R E A M * / / )  

* 2OHU*GAMMA SHOULD EQUAL 9 I 1 XI 1 P H T O T A L  ( C A P )  P S  I ON * 
lOHSLIPSTREAM*/*9X*36HTOTAL X-VEL. S L I P S T R E A M  V O R T I C I T Y *  

* 1 8 X * 3 H F / 2 * 1 5 X * 3 6 H S H O U L D  E Q U A L  I T S  V A L U E  A T  X E I N F I N I T Y I  
* / r B X * 3 6 H O N  S L I P S T R E A M *  P E R  U N I T  X-LENGTH..~XIBH--------~ * 14H -------------- *5X13lH-‘-----------------------’-------, 

* 7H-------r/14H X I ~ X * ~ H U ( X ) ~ ~ ~ X I B H G A M M A ( X ) * I ~ X * ~ H L H S * ~ I X *  * ~ H R H S ~ I ~ X I ~ H L H S . I ~ X I J H R H S . / )  

1000 F O R M A T ( l H I r 2 2 X * 4 0 H R  0 T 0 R 0 U T 0 F G R 0 U N D * 

1010 F O R M A T ( ~ H O I ~ ~ X I ~ ~ H D A M P I N G  C O E F F I C I E N T S I  A L P H A  = * F 5 * 2 * 9 H  B E T A  S I  

1020 F O R M A T ( l H O * / / * 4 5 H  N U M E R I C A L  CHECK OF D Y N A M I C  (FORCE-FREE)  AND 9 

1030 FORMAT(  I H  r 5 O X ~ B H @ Y N A M I C ~ . 2 S X t 1 0 H K r N E M A T 1 C . r / / r 5 4 X ~  

1040 F O R M A T ( 1 H  *F5.?*F12.5rF2~.5rF22~5*FI4.5rF20.5rF16.~) 
1050 F O R M A T ( 1 H  t5H I N F ~ r F 1 2 ~ ! 5 ~ F 2 0 ~ 5 r F 2 2 ~ 5 ~ F I 4 ~ ! 5 ~ F 2 0 ~ 5 ~ F l 6 ~ 5 ~  

D R l N T  1 0 0 0 . I M * l D * l Y  
P R I N T  101 0 * A L P H A  .BETA.CC*LAMBDA*NXS*NXG 
P R I N T  1020 S P R I N T  1030 

DO 60 I r l . 2 0  
IF (1-20) 20.10*10 

C A L L  S H A P E ( E * O . O * T l )  S CBtO.S*TI**2*(LAMBDA+GI) 

10 U~LAMBi?A+O.S+Gl  S G A M t G I  
CA=O*5*(CC-(CC/(2.O*TI))**2) 
P+ I =re B GO TO 30 

20 zz=x(  I ) S C A L L  S H A P E ( l r Z Z i T 1 )  
C A I O . S * ( C C - ( C C / ( ~ . O * T T ) ) * * ~ )  
C A L L  V O R T E X ( Z Z * G I * G A M )  J C A L L  F A C T O R ( Z Z * F A C )  
GAMoFACWGAM S C A L L  T O P B O T ( Z 2 )  
C A L L  L I V I T C H K  B I k L A M R D A  
PSI rO.S+LAMBDA*TT**2  S C A L L  f W O I N T G L ~ G T G ~ G G G ~ U ~ P S I )  

30 UG=U*GAM 1 IF (1-20) 4 0 r S O r 5 0  
40 P R I N T  1040 -22 rU*  GAMIUG r CA P S I  * CB 

60 TO 60 
50 P R I N T  I O S O * U * G A M . U G * C A t P S I * C B  
60 C O N T I N U F  

E N D  

SIJBROUT INE F A C T O R ( X * F A C )  
F X T F R N A L  FPJ 

COMMON/NUMRERXS/NXS N X G  
T P t O . 0  

T P s T P + B ( I  ) * F P J ( X * I )  

C O M M O N / C O F F S / A ( S O ) ~ R ( S ~ )  

no I O  i=I.Nxs 

10 C O N T I N U E  
F A C x S Q R T F ( I . O + T P * * 2 )  
F N D  
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FUNCTION FJ(XI J) 
FJ=FXPF(-J*X)  
END 

F I J N C T I O N  F P J ( X 1  JI 
FPJ=-J+FXPF(-J+X)  
END 

SUBROUTINE GEES(NUMITT IT IZZ~ZIGICT.CTT)  

D E L = ( Z Z - Z ) * + E  S ATOPmDEL+TT*+2-T+*2 
0TOP=DEL+T**2-TT+*2 % A B O T ~ 8 o O * P I + T E R M + T  
B0OT=0.O+PI*TERM*TT 
A=ATOP/ABOT S R=BTOP/BROT 
A R C ~ I . O + ( ( T T - T ) + + ~ + ( Z Z - Z ) ~ * ~ ) / ( ~ O O + T T + T )  
C A L L  QPMHALF ( AQG 1OPH OMH) % GO TO ( 3 0 * 2 0 1 1 0 ) r N U M  

P1=301415927  S T E R M = S O R T F ( T T + T )  

10 C=TERM+OPH/(2.O+PI ) 

20 GT= (B*OPH+A+OMH / f ARG*+2-1 0 ) 
30 GTT~(A*OPH+B*OMH)/(ARG**2-loO) 

FNr) 

F U N C T I O N  GGGCZ) 
C O M M ~ N / I N T G N ~ / N G E E S I T T ~ Z Z ~ N ~ K ~ G ~  
C A L L  SHAPE ( 1 1 2 1 T ) S C A L L  V O R T E X ( Z I G I ~ G )  
C A L L  FACTOR ( Z  1 F A C  S G=FAC*G 

CGG=GG*G 
FND 

C A L L  G E F S ~ ( 3 1 f T r T r Z Z r Z r C G 1 D l l M r D ~ J M M )  

F U N C T I O N  G T G ( Z )  
COMMON/INTGND/NGEES~TT~ZZ~N~K~Gl 
C A L L  SHAPE ( 1eZ.T  ) % C A L L  V O R T E X ( Z * G I  r G )  

C A L L  
C A L L  F A C T O Q ( Z 9 F A C )  B G=FAC+G 

GTG=GTT*G/TT 
FND 

GFES ( 1 t TT 1 T ~ Z Z I Z I  DUM 1 9UMY r G T T  ) 

SUBROUT INE L IM 1 TCHK 
C O M M O N / L I M l T S / T O P ~ 7 ~ r B O T o r N G D ~ 7 ~ ~ N G D ~ 7 ~  
DO 40 Is117 
I F  ( B O T ( I ) - T O P ( I ) )  40*40*10 

10 I F  (1 -7 )  20130.30 
20 BOT( 1+1 )=DOT( I ) 

70 R O T ( l ) = T O P ( I )  
4 0  C O N T I N U E  

END 
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SUBROUTINE MATINV(A~NIBIMIDETERM) 
D I M E N S I O N  I P I V O T ~ 5 ~ ~ * A ~ S 0 ~ 5 0 ) r B ~ 5 O ~ l ~ ~ l N D E X ~ 5 0 ~ 2 ~ ~ P I V O T ~ ~ O ~  
n E T e R M =  1 0 
DO 10 J = l * N  
I P I V O T (  J ) = O  

10 CONT1hlUE 
DO 200 l = l r N  
AMAXIOmO 
00 60 J - l r N  
I F  ( I P I V O T ( J ) - I )  20r60.20 

20 DO 50 K = I r N  
I F  ( l P I V O T ( K ) - l )  30*50*240 

30 IF  (ABSF( AMAX ) - A B S  ( A t  JIK) 1 ) 40r50150 
40 I R O W r J  S I C O t U M = K  

50 C O N T I N U E  
60 C O N T I N U E  

AMAX=A( J IK)  

IPIVOT(ICOLUM)~lPIVOT~ICOLUM)+l S I F  ( I R O W - I C O L U M )  701110170 
70 DETERMI-DETERM 

DO 80 L = l r N  
SWAP=A( I R O W a L )  
A (  I C O L U M * L ) = S W A P  

I F  ( M )  1 1 0 ~ 1 1 0 ~ 9 0  

S W A P n B t  IROWIL) 
R ( 1 C O L U M t L ) P S W A P  

80 C O N T I N U E  

90 no 100 L = I * M  

100 C O N T I N U E  
1 1 0  I N D E X ( l r 1 ) t l R O W  

I N D E X ( l r 2 ) = l C O L U M  
D E T E R M = D E T € R M * P I V O T ( l )  

A ( I COLUM *L ) = A  t I COLUM L / P I V O T  

IF  ( M )  1 5 0 ~ 1 5 0 ~ 1 3 0  

B ( I C O L U M - L  1 x 8  ( I C O L U M  *L ) / P I V O T  

no i ?o  L=I*N 

120 C O N T I N U E  

130 DO 140 L = l r M  

140 CONT INUE 
1 9 0  DO 200 L1tl-N 

160 T = A ( L l r l C O L U M )  
I F ( L l - 1 C O L U M )  1 6 0 r 2 0 0 r 1 6 0  

DO 170 L’ l rN 
A ( L 1  rL ) = A  ( L l  tL ) -A (1COLUM.L )+T 

IF  ( M )  200r200r180 
170 C O N T I N U E  

180 DO 190 L = l * M  

S P I V O T  ( I  ) = A  ( ICOLUMI I C O L U M )  
S A ( I C O L V M ~ I C O L U M ) = l m O  

I )  

S A ( L l r l C 0 L U M ) ~ O m O  

B ( L 1 * L 1 =B (L I *L ) -B ( I COLUM *L )+T 
190 C O N T I N U E  
200 C O N T I N U E  

DO 230 l = l r N  
L=N+l-l 
I F  ( I N D E X ( L I I ~ - I N D E X ( L ~ ~ ) )  210*230r210 

DO 220 K S l r N  
210 J R O W = I N D E X ( L t l )  S J C O L U M I  NDEX L * 2 )  

S W A P = A ( K *  JROW) 
A ( K *  J C 0 L U M ) S S W A P  

220 C O N T I M J E  
230 C O N T I N U E  
240 R E T U R N  

END 

0 A ( K * J R O W ) = A ( K s J C O L U M )  
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S U B R O U T I N E  NGAUSS(EIAIFXINTIMEIINTEGRAL) 
TYPE R F A L  I N T E G R A L  
D I M E N S I O N  R ( S ) r U f 5 )  
DATA ~Rf0~1477621124~0~134633359?~0~109543l~I3~0~074725674~~~ * 0.03333567215)* 

* (U '0~0744371695~0 .2166976971~0~339704704~~0~~32~3168331  
* 0.4869532643) 

INTEGRALIO. 0 
DO 20 J = l * N T I M E  
X L = A + (  J-1 ) * ( B - A ) / N T l M E  S X U ~ E - ( N T l M E - J ) * ( E - A ) / N T I M E  
D=X\J-XL I S=(X(J+XL)/2.O 
TEMP=OeO 
170 10 K=I*S 
TEMP=TEMP+R(K )* ( F X  ( S+D*U (K ) ) + F X  ( S-D*U ( K  ) 1 ) 

10 

20 

10 

20 

CONT I NUE 
TEMP=TEMP*D 
CONT I NU€ 
END 

s INTEGRAL=INTEGRAL+TEMP 

S U B R O U T I N E  O N E I N T G L ( F A 9 A  1 
C O M M O N / L 1 M l T S / T O P ~ 7 ~ . B O T o r N C D ~ 7 ~ ~ N G D ~ 7 ~  
DO 20 I s 1 9 7  
IF ~ A B S F ~ T O P ( 1 ) - R O T ( I ~ ) - O ~ O ~ O O O O l ~  20*20*10 
C A L L  NGAUSS (TOP ( I ) rEOT ( I ) ~ F A I N G D  ( I ) r AA ) 
AmA+AA 
CONT I NU€ 
END 

SIJEROUT INF 01JTPUT 
T Y P E  R F A L  LAMBOA 
C O M M O N / A b D E D / F t ( 5 0 ) ~ T I  

COMMON/ I NPUT/LAMEDA CC * A L P H A  B E T A  
C O M M O N / I N T G N O / N G E E S ~ T T ~ ~ ~ ~ N ~ K ~ G I  
COMMON/NUMBERXS/NXS*NXG 
C O M M O N / P R I N ~ / X S ~ ~ ~ ~ r X G ~ 5 O ~ ~ X P ~ 5 O ~ ~ S R ~ ~ O ~ ~ S C ~ 5 O ~ ~ ~ T E R ~ I M ~ I D ~ l Y  
C O M M O N / S A V E / N P ~ I N D E X ~ S R S ( 5 0 ) ~ S C S ( 5 0 )  

~OMMON/COEFS/A (70 ) B ( SO ) 

1000 F O R M A T ( I H l r 2 2 X * 4 0 H R  0 T 0 R 0 U T 0 F G R 0 U N 0 * * 35HE F F E C T ( N A S 1 - 6 3 4 9 ) 1 5 X * l H ( r 1 2 r l H / * 1 2 *  
* lH/* 1 2 9 1 H )  1 

* F5 .P  / e  36x1 
* 2 4 H L O A D I N G  C O E F F I C I E N T *  C = r F 7 . 4 * / 1 3 6 X *  
* 2 3 H A D V A N C F  R A T I O 0  LAMBDA x * F 7 . 4 * / * 3 6 X e  
* 16HHUR R A D I U S  = 0.0) 

* 29HGAMMA C O L L O C A T I O N  P O I N T S *  N ~ * 1 3 9 / )  

1010 F O R M A T ( ~ H O I ~ ~ X I ~ ~ H D A M P I N G  C O E F F I C I E N T S *  A L P H A  r * F 5 * 2 * 9 H  B E T A  = I  

1 0 2 0  F O R M A T ( l H O * 2 1 X t 2 9 H S H A P E  C O L L O C A T I O N  P O I N T S 9  M r * I 3 r 1 2 X *  

1030 F O R M A T ( 1 H  r 2 8 X d j H X  S U B * I 3 * 2 H  = * F B o 4 * 2 6 X * 5 H X  S U B e 1 3 r 2 H  =*F8.4) 
1040 F O R M A T ( 1 H  * 7 2 X * 5 H X  S U E * 1 3 r 2 H  nrF8.4) 
1050 F O R M A T ( 1 H  r 2 8 X 9 5 H X  S U R * 1 3 * 2 H  SrF8.4) 

1070 F O R M A T ( 1 H  * 7 9 X * 3 5 H S L l P S T R E A M  S L I P S T R E A M  C I R C U L A T I O N * / ~ ~ X I  
1060 F O R M A T ( I H O I I J H I T E R A T I O N  NO.~I~,/) 

* 1 8 H S H A P E  COEFFICIENTS~14X*l6UGAMMA COEFFICIFNTS~IIXIIHXI 
* ~ I X I ~ O H R A D I U S I  T GAMMA SUE $ I / )  

* 4 H b O O O 1 1  l X + b H l e 0 0 0 0 ~ F I R . 4 )  
1071  F O R M A T ( 1 H  r 4 X * I O H E  SUB 1 = * F 1 2 . 4 r l O X * l O H A  SUE 1 = * F l E e 4 * 8 X 1  

1072 F O R M A T ( I H  * 4 X * l O H B  SUR 1 f * F 1 2 . 4 * 1 0 X * l O H 4  SUR 1 = * F 1 2 * 4 * 8 X *  

1080 F o R M A T I ~ H  9 4 X * S H E  S U B * I 3 * 2 H  = r F 1 2 * 4 r l O X * 5 H A  S U B * 1 3 * 2 H  PtF1204r  

1090 F O R M A T ( 1 H  r 4 X * 5 H B  s U B 1 1 3 . 2 H  = r F 1 2 . 4 1 l O X * 5 H A  S U B . 1 3 r 2 H  = * F 1 2 0 4 * 5 X 1  

* ~ H ~ O O ~ ~ ~ ~ X ~ ~ H ~ ~ ~ ~ ~ ~ I ~ O X ~ ~ H I N F I N I T Y ~  

* F12.3rF17.4rFl8.4 ) 

* 8H 1 NF I N I  TY tF16.4 * F l e a 4  1 



1100 FORMAT(1H *4)<*§HB SUB*I3*2H =rF1204rlOXrSHA SUBe13r2H trF12.4) 
1110 FORMATtIH *4X*SHB SUB*13*2H = r F 1 2 . 4 r 3 2 X r F 1 2 . 3 r F 1 7 ~ 4 r F l ~ o 4 )  
1120 FORMAT(1H t4X15HB SUBrI3r2H ~rF12.4r37XrAHINFINITYrF1604rFl804) 
1130 FORMAT(1H r4XrSHR SURrI3r2H =rF12.4) 
1140 FORMATtIH r36X15HA SuB113r2H = r F 1 2 . 4 r F I 2 . 3 r F 1 7 . 4 r F 1 8 . 4 )  
llS0 FORMAT(1H t36X*5HA SUBrI3r2H ~ r F 1 2 . 4 r 5 X r R H I N F I N I T Y I F 1 6 . 4 r F 1 8 . 9 )  
1160 FORMAT(1H r3hXrTHA SUB*I3*EH nrF12.4) 
1170 FORMAT(1H r58XrF12.3rF17.4rF18.4) 
1180 FORMAT(1H r 6 3 X r 8 H I N F I N I T Y r F l 6 r 4 r F i B . 4 )  

W=3O 
DO 60 I=2rNP 
GO TO (594)rINDEX 

4 SRS(I)=SR(I) 
GO TO 45 

5 IF ( 1 - 5 )  3or?n.io 

20 TF (1-17) 4 5 . 4 ~ ~ 2 5  

30 J=?*I-? s XP(T)=O.OI*J 

10 IF (1-10) 40r40r20 

25 IF (1-25) 50r50r51 

GO TO 59 

GO TO S5 

GO TO 55 

GO TO 55 

40 JnI-4 S XP(1 )=O.O'=*J 

45 J=I-7 S XP(1 )=O.l@*J 

'50 J=1-13 S XP(t )=0025*J 

51 J=I-2? S XP(I)=l.On+J 
55 CALL SHAPE ( 1 r XP ( I ) r SR C I ) ) S CALL VOQTEX(XP( I ) rG1rSCC 1 )  1 
60 CONTINUE 
65 PRINT 1000rIMrIDrIY S PRINT I O I O r A L P H A r B E T A r C C r L A M B D A  

70 M=NXS 9 GO TO 90 
86 U=NXG 
90 PRINT 1 0 3 O r ( f r X S ( I ) r I r X G ( 1 ) r I t l r M )  

PRINT 1020rNXS r NXG S IF (NXS-NXG) 70r70r8O 

M=M+l S IF (NXS-NXG) 100r120r110 

PR I NT 

TF (NXS-NXG) l?~r140r140 

100 PRINT 1046r(lrXG~I)rl~M1NXG) S GO TO 120 
1 1 0 
120 PRINT 1060rITF9 S PRINT 1070 

130 IF (NXG-NP) 14Or15@r160 
140 IF (NXS-NP) 15Cr150r170 
150 M=NP+l S GO TO 180 
160 M=NXG S GO T O  180 
170 M=NXS 
180 YOuNTal J IF (ITER) 181r181t182 
181 PRINT 1071rB(1 )rA(I )*GI J GO TO 183 
182 PRINT 1072*011)*A(l) 
183 DO 390 1=2rM 

TF (I-NXS) 190r190r?20 
190 IF (I-NXG) 23012')01210 
200 IF (I-NP) ?53t250r260 
210 IF (I-NP) 290r?90r300 
220 IF (I-NXG) 230r230r240 
270 1F (I-NP) 330r330r?40 
240 TF (I-NP) 770t370r780 
250 PRINT 

26n GO TO (270r2AO)rKOUNT 
270 PRINT 1090rIrB(I)rIrA(I)rTIrGI 

1 0'50 r ( I r XS ( I 1 r I =M r NXq ) 

10801 I re( I 1 r I r A  ( 1 )  rXP( I ) rSR( I ) rfC ( 1 ) 
GO TO 390 

KOtJNT 2 S GO TO 390 
280 PRINT 1100rIrB(I)rIrA(I) S GO TO 390 
290 PRINT 1 1  1 0 1  1 r e (  I rXP( 1 ) r S R (  I ) * S C (  1 )  

GO T O  790 
m o  GO TO (~IO.VO).KOUNT 
310 PRINT 112OrIrR(I)rTIrGI 

KOUNT - 2 S GO TO 390 



320 P R I N T  1 1 3 0 r I r B ( I )  S GO TO 790 
330 P R I N T  

3 4 0  GO T O  ( 3 5 0 r 3 6 O ) r K O U N T  
390 P R I N T  1 1 5 0 ~ I * A ( I J r T l r G I  

KOUNT=2 S GO TO 390 
3 6 0  P R I N T  1 1 6 ~ * 1 r A ( ? )  S GO TO 390 
370 P R I N T  1 1 7 0 r X P ( l ) r S R ( l ) r S C ( I )  S Go TO 390 
>)A0 P R I N T  1 1 0 0 r T I  * G I  
390 C O N T I N U F  

1 1 4 0  r I r A (  I ) r XP ( I ) r  SR ( 1 ) r SC ( I ) 
GO T O  390 

END 

SUBROUTINE Q P M H A L F ( Z r O P H * 6 M H )  
T Y P F  R F A L  K P R I M F S Q r K  
KPRIMESQ~I.6-(2.O/(Z+l~o)) J A I =KPR I MESQ 
A2=A l * A  1 S A l = A ? + A 1  
A 4  = A 2* A 2 S A L O r L O G F ( 1  .O /KPRIMESO)  
K = S O R T F ( 2 . 0 / ( 2 + 1 . 0 ) )  J R = S Q R T F ( 2 . O * ( Z + l . O ) )  
FLE~1~00000~00000+~4432514146j+A1+.06260601220*A2 

+.04757367546*A3+.017365O6451*A4+ 
* (~?4990~68710*A1+~09?00180037*A2+  * .04069697526*A3+rO0526449639*A4)*ALO 

ELK~1.38629436112+.096h6344259+A1+.0759009270~*A? 
* + ~ O 3 7 4 2 5 6 7 7 1 7 * A 7 + ~ 0 1 4 5 r 1 0 h P 1 P + A 4 +  

(~50000000000+~12498593597*A1+~06880248576*A2 
* +.03328355346*A3+.00441787012+A4),ALO 

O P H t Z + K + E L K - B * E L E  
FND 

SUBROUTINE SHAPF(KODF*X.S) 
F X T F R N A L  F J  
C O M M O N / A D D F D / F ~ ( ~ O ) ~ T I  
COMMON/COEFS/A(SO)rR(50) 
C O M O N / N U M R E R X S / N X S r N X G  
GO T O  ( l O r 3 0 ) * K O f 7 F  

10 S a T I  
n0 20 J I l e N X S  
S = S + R ( J ) + F J ( X * J )  

70 C O N f l N I J F  
GO T O  S O  

70 S t l . 0  
no 4 0  J=I.NX~ 
S=S-R( J ) * F Z (  J 1 

40 C O N T l N U E  
'io FND 
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NASA-Langley, 1968 - 1 

90 

160 
170 S T O P f 6 ) = B O T ( 7 ~ ~ Z Z + 1 0 * 0  

S U B R O U T I N E  T W O I N T G L ( F A r F B i A t B )  
COMMON/L I MI T f / T O P  ( 7  1 *ROT (7 
no 20 1=1r7 
I F  ~ A B S F ~ l O P ~ I ) - R O T ~ I ~ ~ - O ~ G O ~ O O O l ~  2 C r 2 0 . 1 0  

10 C A L L  N G A U S S ( T O P ( I ) r R O T ( I ) r F A 1 N C n o r A A )  
C A L L  N G A U S S ( ~ O P ( I ) r B O T ( I ) . F B , N C D ( I ) . B B )  
A = A + A A  I RaR+RB 

END 

r N G D  ( 7 )  

20 C O N T I N U E  

1 

S U B R O U T I N E  V O R T E X ( X r G 1 r V )  
Exiewa; GJ 
C O M M ~ N / C O E F S / A ( S ~ ) ~ B ( ~ ~ )  
C O M M O N / ~ M B E R X S / h l X S r N X G  
V = l  *0 
00 10 J = l * N X G  
V = V + A ( J ) + G J ( X t J )  

V=G I +V 
E N D  

0 CONTINIJE  

END ROTOROGE 
F l N l S  
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